|
|
|
|
|
Research progress in old and new cardiac biomarkers in patients with acute chest pain |
Huang Chun-cai,Chai Yan-fen |
Department of Emergency Medicine, General Hospital Affiliated to Tianjin Medical University, Tianjin 300052,China |
|
|
Abstract With the rapid development of the chest pain centers in China, a more timely diagnoses of patients with acute chest pain is needed. The diagnosis and treatments of patients with acute chest pain depend on the availability of accurate and effective cardiac biomarkers. Unfortunately, the old biochemical indicators are often inadequate and inaccurate. There has been an increasing interest in development of the ultra-early markers for inflammation, markers for ischemia, markers for heart failure, and microRNA.
|
|
Corresponding Authors:
Chai yan-fen, E-mail: chaiyanfen2012@126.com
|
|
|
|
[1]Ladue JS, Wroblewski F, Karmen A. Serum glutamic oxaloacetic transaminase activity in human acute transmural myocardial infarction[J]. Science, 1954, 120(3117):497-499.
[2]World Health Organization. Hypertension and coronary heart disease: Classification and Criteria for Epidemiological Studies, First Report of the Expert Committee on Cardiovascular Diseases and Hypertension[R]. Geneva: WHO, 1959.
[3]Panteghini M. Enzyme and muscle diseases[J]. Curr Opin Rheumatol, 1995, 7(6):469-474.
[4]Starr JW, Wagner GS, Draffin RM, et al. Vectorcardiographic criteria for the diagnosis of anterior myocardial infarction[J]. Circulation, 1976, 53(2):229-234.
[5]Gibler WB, Gibler CD, Weinshenker E, et al. Myoglobin as an early indicator of acute myocardial infarction[J]. Ann Emerg Med, 1987, 16(8):851-856.
[6]Rapaport E. Nomenclature and criteria for diagnosis of ischemic heart disease. Report of the Joint International Society and Federation of Cardiology/World Health Organization task force on standardization of clinical nomenclature[J]. Circulation, 1979, 59(3):607-609.
[7]Hamm CW, Katus HA. New biochemical markers for myocardial cell injury[J]. Curr Opin Cardiol, 1995, 10(4):355-360.
[8]Carlton EW, Cullen L, Than M, et al. A novel diagnostic protocol to identify patients suitable for discharge after a single high-sensitivity troponin[J]. Heart, 2015, 101(13):1041-1046.
[9]Weber M, Bazzino O, Navarro Estrada JL, et al. Improved diagnostic and prognostic performance of a new high-sensitive troponin T assay in patients with acute coronary syndrome[J]. Am Heart J, 2011, 162(1):81-88.〖ZK)〗
[10]Rodriguez F, Mahaffey KW. Management of Patients With NSTE-〖JP〗ACS: A Comparison of the Recent AHA/ACC and ESC Guidelines[J]. J Am Coll Cardiol, 2016, 68(3):313-321.
[11]Scirica BM, Morrow DA, Cannon CP, et al. Clinical application of C-reactive protein across the spectrum of acute coronary syndromes[J]. Clin Chem, 2007, 53(10):1800-1807.
[12]Heeschen C, Hamm CW, Bruemmer J, et al. Predictive value of C-reactive protein and troponin T in patients with unstable angina: a comparative analysis. CAPTURE Investigators. Chimeric c7E3 AntiPlatelet Therapy in Unstable angina REfractory to standard treatment trial[J]. J Am Coll Cardiol, 2000, 35(6):1535-1542.
[13]Prabhu M. HS CRP IN ACUTE CORONARY SYNDROME[C]// Aace Meeting. 2016.
[14]Russell CJ, Exley AR, Ritchie AJ. Widespread coronary inflammation in unstable angina[J]. N Engl J Med, 2003, 348(19):1931.
[15]Govindarajan S, Raghavan VM, Rao AC. Plasma Myeloperoxidase and Total Sialic Acid as Prognostic Indicators in Acute Coronary Syndrome[J]. J Clin Diagn Res, 2016, 10(8):BC9-13.
[16]Dollery CM, Mcewan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease[J]. Circ Res, 1995, 77(5):863-868.
[17]Fingleton B. Matrix metalloproteinases as valid clinical targets[J]. Curr Pharm Des, 2007, 13(3):333-346.
[18]Fernandez MN, Gagliardi J, Fabre B, et al. Matrix metalloproteinases and psychosocial factors in acute coronary syndrome patients[J]. Psychoneuroendocrinology, 2016, 63:102-108.
[19]Varo N, de Lemos JA, Libby P, et al. Soluble CD40L: risk prediction after acute coronary syndromes[J]. Circulation, 2004, 108(9):1049-1052.
[20]Bayes-Genis A, Conover CA, Overgaard MT, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes[J]. N Engl J Med, 2001, 345(14):1022-1029.
[21]Heeschen C, Dimmeler S, Fichtlscherer S, et al. Prognostic value of placental growth factor in patients with acute chest pain[J]. JAMA, 2004, 291(4):435-441.
[22]Cassidy A, Chiuve SE, Manson JE, et al. Potential role for plasma placental growth factor in predicting coronary heart disease risk in women[J]. Arterioscler Thromb Vasc Biol, 2009, 29(1):134-139.
[23]Su D, Li Z, Li X, et al. Association between serum interleukin-6 concentration and mortality in patients with coronary artery disease[J]. Mediators Inflamm, 2013, 2013:726 178.
[24]Sinha MK, Gaze DC, Tippins JR, et al. Ischemia modified albumin is a sensitive marker of myocardial ischemia after percutaneous coronary intervention[J]. Circulation, 2003, 107(19):2403-2405.
[25]Peacock F, Morris DL, Anwaruddin S, et al. Meta-analysis of ischemia-modified albumin to rule out acute coronary syndromes in the emergency department[J]. Am Heart J, 2006, 152(2):253-262.
[26]Wu AH. The ischemia-modified albumin biomarker for myocardial ischemia[J]. MlO MedLab Obs, 2003, 35(6):36-38,40.
[27]Rathore V, Singh N, Rastogi P, et al. Correlation of Inflammatory Marker with Glycogen Phosphorylase BB (GPBB)in Patients of Acute Myocardial Infarction[J]. Int J Contem Med Res, 2017, 4(5):1122-1124.
[28]Lillpopp L, Tzikas S, Ojeda F, et al. Prognostic information of glycogen phosphorylase isoenzyme BB in patients with suspected acute coronary syndrome[J]. Am J Cardiol, 2012, 110(9):1225-1230.
[29]Oliver MF. Free fatty acids and acute coronary syndromes—the history[J]. QJM, 2011, 104(7):625-627.
[30]Zschiesche W, Kleine AH, Spitzer E, et al. Histochemical localization of heart-type fatty-acid binding protein in human and murine tissues[J]. Histochem Cell Biol, 1995, 103(2):147-156.
[31]Pyati AK, Devaranavadagi BB, Sajjannar SL, et al. Heart-Type Fatty Acid Binding Protein: A Better Cardiac Biomarker than CK-MB and Myoglobin in the Early Diagnosis of Acute Myocardial Infarction[J]. J Clin Diagn Res, 2015, 9(10):BC8-11.
[32]Kilcullen N, Viswanathan K, Das R, et al. Heart-type fatty acid-binding protein predicts long-term mortality after acute coronary syndrome and identifies high-risk patients across the range of troponin values[J]. J Am Coll Cardiol, 2007, 50(21):2061-2067.
[33]Packard CJ, O′Reilly DS, Caslake MJ, et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group[J]. N Engl J Med, 2000, 343(16):1148-1155.
[34]Chambless LE, Folsom AR, Davis V, et al. Risk Factors for Progression of Common Carotid Atherosclerosis: The Atherosclerosis Risk in Communities Study, 1987-1998[J]. Am J Epidemiol, 2002, 155(1):38-47.
[35]Chung H, Kwon HM, Kim JY, et al. Lipoprotein-Associated Phospholipase A2 Is Related to Plaque Stability and Is a Potential Biomarker for Acute Coronary Syndrome[J]. Yonsei Med J, 2014, 55(6):1507-1515.
[36]Danne O, Mckel M, Lueders C, et al. Prognostic implications of elevated whole blood choline levels in acute coronary syndromes[J]. Am J Cardiol, 2003, 91(9):1060-1067.
[37]de Lemos JA, Mcguire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease[J]. Lancet, 2003, 362(9380):316-322.
[38]Wang TJ, Larson MG, Levy D, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death[J]. N Engl J Med, 2004, 350(7):655-663.
[39]Keller T, Tzikas S, Zeller T, et al. Copeptin Improves Early Diagnosis of Acute Myocardial Infarction[J]. J Am Coll Cardiol, 2010, 55(19):2096-2106.
[40]Mckel M, Searle J, Hamm C, et al. Early discharge using single cardiac troponin and copeptin testing in patients with suspected acute coronary syndrome (ACS): a randomized, controlled clinical process study[J]. Eur Heart J, 2015, 36(6):369-376.
[41]Ago T, Sadoshima J. GDF15, a cardioprotective TGF-β superfamily protein[J]. Circ Res, 2006, 98(3):294-297.
[42]Kai CW, Kempf T. Growth differentiation factor 15 in heart failure: an update[J]. Curr Heart Fail Rep, 2012, 9(4):337-345.
[43]Kai CW, Kempf T, Bo L, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non-ST-elevation acute coronary syndrome[J]. Circulation, 2007, 116(14):1540-1548.
[44]Kosova EC, de Lemos JA, Jarolim P, et al. Abstract 16378: Growth Differentiation Factor-15 Independently Predicts 2 Year Mortality in Patients With Acute Coronary Syndrome: Observations From the A to Z Trial[J]. Circulation, 2014, 2014:130.
[45]Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure[J]. J Am Coll Cardiol, 2017, 68(13):1476.
[46]董浩, 安永强, 刘巍. 可溶性ST2在心力衰竭中的研究进展[J]. 中国循证心血管医学杂志, 2017, 9(8):1010-1012.
[47]Shimpo M, Morrow DA, Weinberg EO, et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction[J]. Circulation, 2004, 109(18):2186-2190.
[48]Eggers KM, Armstrong PW, Califf RM, et al. ST2 and mortality in non-ST-segment elevation acute coronary syndrome[J]. Am Heart J, 2010, 159(5):788-794.
[49]Tolppanen H, Rivas-Lasarte M, Lassus J, et al. Combined Measurement of Soluble ST2 and Amino-Terminal Pro-B-Type Natriuretic Peptide Provides Early Assessment of Severity in Cardiogenic Shock Complicating Acute Coronary Syndrome[J]. Crit Care Med, 2017, 45(7):e666-e673.
[50]Lisowska A, Knapp M, Tycińska A, et al. Predictive value of Galectin-3 for the occurrence of coronary artery disease and prognosis after myocardial infarction and its association with carotid IMT values in these patients: A mid-term prospective cohort study[J]. Atherosclerosis, 2016, 246:309-317.
[51]George M, Shanmugam E, Srivatsan V, et al. Value of pentraxin-3 and galectin-3 in acute coronary syndrome: a short-term prospective cohort study[J]. Ther Adv Cardiovasc Dis, 2015, 9(5):275-284.
[52]Singsaas EG, Manhenke CA, Dickstein K, et al. Circulating Galectin-3 Levels Are Increased in Patients with Ischemic Heart Disease, but Are Not Influenced by Acute Myocardial Infarction[J]. Cardiology, 2016, 134(4):398.
[53]Zhang WQ, Xie BQ. A meta-analysis of the relations between blood microRNA-208b detection and acute myocardial infarction[J]. Eur Rev Med Pharmacol Sci, 2017, 21(4):848-854.
[54]Adachi T, Nakanishi M, Otsuka Y, et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction[J]. Clin Chem, 2010, 56(7):1183-1185.
[55]Gidlf O, Smith JG, Miyazu K, et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction[J]. BMC Cardiovasc Disord,2013, 13:12. |
|
|
|