|
|
|
|
|
Glycocalyx and its role during hemorrhagic shock
|
Zhao Meng, Zhao Zi-Gang
|
Institute of Microcirculation, Hebei North University, Zhangjiakou 075000, China
|
|
|
Abstract The glycocalyx is an important component of endothelial double barrier, has various physiological functions includes anti-inflammation and anti-coagulation, etc. Hemorrhagic shock induces the damage of glycocalyx, which plays important roles in the vascular hyper-permeability, excessive inflammation, and increased blood coagulation, and becomes one of mechanisms by which refractory hemorrhagic shock. The current article reviews the structure and function of glycocalyx and its role during hemorrhagic shock, thus, provides a novel approach for treatment of hemorrhagic shock basing on glycocalyx.
|
Received: 09 December 2017
|
Corresponding Authors:
Zhao Zi-gang, E-mail: zzghyl@126.com
|
|
|
|
[1]姚咏明,蒋丽娜. 提高对外科危重患者毛细血管渗漏综合征的认识[J]. 中华实验外科杂志, 2011, 28(2): 169-170.
[2]安友仲. 毛细血管渗漏综合征的实质是内皮细胞炎性损伤[J]. 中华医学杂志, 2012, 92(45): 3182-3184.〖ZK)〗
[3]Deng X, Cao Y, Huby MP, et al. Adiponectin in fresh frozen plasma contributes to restoration of vascular barrier function after hemorrhagic shock[J]. Shock, 2016, 45(1): 50-54.
[4]Sawant DA, Tharakan B, Hunter FA, et al. Glycogen synthase kinase 3 inhibitor protects against microvascular hyperpermeability following hemorrhagic shock[J]. J Trauma Acute Care Surg, 2015, 79(4): 609-616.
[5]Sun GX, Guo YX, Zhang YP, et al. Posthemorrhagic shock mesenteric lymph enhances monolayer permeability via F-actin and VE-cadherin[J]. J Surg Res, 2016, 203(1): 47-55.
[6]Lin B, Liu Y, Li T, et al. Ulinastatin mediates protection against vascular hyperpermeability following hemorrhagic shock[J]. Int J Clin Exp Pathol, 2015, 8(7): 7685-7693.
[7]Schtt U, Solomon C, Fries D, et al. The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review[J]. Scand J Trauma Resusc Emerg Med, 2016, 24: 48.
[8]Gao L, Lipowsky HH. Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes[J]. Microvasc Res, 2010, 80(3): 394-401.[9]公茂磊. 调整剪切力抑制内皮细胞多糖包被降解对血管通透性影响的研究[D]. 北京协和医学院, 2013.
[10]Rahbar E, Cardenas JC, Baimukanova G, et al. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients[J]. J Transl Med, 2015, 13: 117.
[11]Chelazzi C, Villa G, Mancinelli P, et al. Glycocalyx and sepsis-〖JP〗induced alterations in vascular permeability[J]. Crit Care, 2015, 19: 26.
[12]Reitsma S, Slaaf DW, Vink H, et al. The endothelial glycocalyx: composition, functions, and visualization[J]. Pflugers Arch, 2007, 454(3): 345-359.
[13]Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer[J]. Annu Rev Biomed Eng, 2007, 9(1): 121-167.
[14]Van Teeffelen JW, Brands J, Stroes ES, et al. Endothelial glycocalyx: sweet shield of blood vessels[J]. Trends Cardiovasc Med, 2007, 17(3): 101-105.
[15]Adamson RH, Lenz JF, Zhang X, et al. Oncotic pressures opposing filtration across non-fenestrated rat microvessels[J]. J Physiol, 2004, 557(Pt 3): 889-907.
[16]Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer[J]. Pflugers Arch, 2000, 440(5): 653-666.
[17]Kolárˇová H, Ambruzová B, Svihálková indlerová L, et al. Modulation of endothelial glycocalyx structure under inflammatory conditions[J]. Mediators Inflamm, 2014, 2014: 694 312.
[18]Curry FR. Microvascular solute and water transport[J]. Microcirculation, 2005, 12(1): 17-31.
[19]van Haaren PM, VanBavel E, Vink H, et al. Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy[J]. Am J Physiol Heart Circ Physiol, 2003, 285(6): H2848-2856.
[20]Chappell D, Westphal M, Jacob M. The impact of the glycocalyx on microcirculatory oxygen distribution in critical illness[J]. Curr Opin Anaesthesiol, 2009, 22(2): 155-162.
[21]Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface[J]. Arterioscler Thromb Vasc Biol, 2003, 23(9): 1541-1547.
[22]Christaki E, Opal SM. Is the mortality rate for septic shock really decreasing[J]. Curr Opin Crit Care, 2008, 14(5): 580-586.
[23]Gunst J, Derese I, Aertgeerts A, et al. Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness[J]. Crit Care Med, 2013, 41(1): 182-194.
[24]Schouten M, Wiersinga WJ, Levi M. Inflammation, endothelium, and coagulation in sepsis[J]. J Leuko Biol, 2008, 83(3): 536-545.
[25]Ryan US, Ryan JW. The ultrastructural basis of endothelial cell surface functions[J]. Biorheology, 1984, 21(1-2): 155-170.
[26]Katritsis D, Kaiktsis L, Chaniotis A, et al. Wall shear stress: theoretical considerations and methods of measurement[J]. Prog Cardiovasc Dis, 2007, 49(5): 307-329.
[27]Mochizuki S, Vink H, Hiramatsu O, et al. Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release[J]. Am Am J Physiol Heart Circ Physiol, 2003, 285(2): H722-726.
[28]Gouverneur M, Spaan JA, Pannekoek H, et al. Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx[J]. Am J Physiol Heart Circ Physiol, 2006, 290(1): H458-462.
[29]Kozar RA, Pati S. Syndecan-1 restitution by plasma after hemorrhagic shock[J]. J Trauma Acute Care Surg, 2015, 78(6 Suppl 1): S83-S86.
[30]Peng Z, Pati S, Potter D, et al. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan-1[J]. Shock, 2013, 40(3): 195-202.
[31]Haywood-Watson RJ, Holcomb JB, Gonzalez EA, et al. Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation[J]. PLoS One, 2011, 6(8): e23 530.
[32]Sadir R, Forest E, Lortat-Jacob H. The heparan sulfate binding sequence of interferon-gamma increased the on rate of the interferon-gamma-interferon- gamma receptor complex formation[J]. J Biol Chem, 1998, 273(18): 10 919-10 925.
[33]Imai T, Hieshima K, Haskell C, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion[J]. Cell, 1997, 91(4): 521-530.
[34]Umehara H, Bloom ET, Okazaki T, et al. Fractalkine in vascular biology: from basic research to clinical disease[J]. Arterioscler Thromb Vasc Biol, 2004, 24(1): 34-40.
[35]Hiscott J, Marois J, Garoufalis J, et al. Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter:evidence for a positive autoregulatory loop[J]. Mol Cell Biol, 1993, 13(10): 6231-6240.
[36]Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion[J]. Circulation, 2000, 101(13): 1500-1502.
[37]van Zyl N, Milford EM, Diab S, et al. Activation of the protein C pathway and endothelial glycocalyx shedding is associated with coagulopathy in an ovine model of trauma and hemrrhage[J]. J Trauma Acute Care Surg, 2016, 81(4): 674-684.
[38]Diebel LN, Martin JV, Liberati DM. Microfluidics: A high throughput system for the assessment of the endotheliopathy of trauma and the effect of timing of plasma administration on ameliorating shock associated endothelial dysfunction[J]. J Trauma Acute Care Surg, 2017, 28.
[39]Bruhn PJ, Nikolian VC, Halaweish I, et al. Tubastatin A prevents 〖JP〗hemorrhage-induced endothelial barrier dysfunction[J]. J Trauma Acute Care Surg, 2018, 84(2):386-392.
[40]崔娜. 感染相关血管通透性异常的基础与临床研究[D]. 北京协和医学院, 2013.
[41]Kozar RA, Peng Z, Zhang R, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock[J]. Anesth Analg, 2011, 112(6): 1289-1295.[42]Torres LN, Chung KK, Salgado CL, et al. Low-volume resuscitation with normal saline is associated with microvascular endothelial dysfunction after hemorrhage in rats, compared to colloids and balanced crystalloids[J]. Crit Care, 2017, 21(1): 160.
[43]Torres LN, Sondeen JL, Ji L, et al. Evaluation of resuscitation fluids on endothelial glycocalyx, venular blood flow, and coagulation function after hemorrhagic shock in rats[J]. J Trauma Acute Care Surg, 2013, 75(5): 759-766.
|
|
|
|