赵梦,赵自刚. 多糖包被及其在失血性休克发展进程中的作用
[J]. 中国急救医学, 2018, 38(3): 273-278.
Zhao Meng, Zhao Zi-Gang. Glycocalyx and its role during hemorrhagic shock
. Chinese Journal of Critical Care Medicine, 2018, 38(3): 273-278.
[1]姚咏明,蒋丽娜. 提高对外科危重患者毛细血管渗漏综合征的认识[J]. 中华实验外科杂志, 2011, 28(2): 169-170.
[2]安友仲. 毛细血管渗漏综合征的实质是内皮细胞炎性损伤[J]. 中华医学杂志, 2012, 92(45): 3182-3184.〖ZK)〗
[3]Deng X, Cao Y, Huby MP, et al. Adiponectin in fresh frozen plasma contributes to restoration of vascular barrier function after hemorrhagic shock[J]. Shock, 2016, 45(1): 50-54.
[4]Sawant DA, Tharakan B, Hunter FA, et al. Glycogen synthase kinase 3 inhibitor protects against microvascular hyperpermeability following hemorrhagic shock[J]. J Trauma Acute Care Surg, 2015, 79(4): 609-616.
[5]Sun GX, Guo YX, Zhang YP, et al. Posthemorrhagic shock mesenteric lymph enhances monolayer permeability via F-actin and VE-cadherin[J]. J Surg Res, 2016, 203(1): 47-55.
[6]Lin B, Liu Y, Li T, et al. Ulinastatin mediates protection against vascular hyperpermeability following hemorrhagic shock[J]. Int J Clin Exp Pathol, 2015, 8(7): 7685-7693.
[7]Schtt U, Solomon C, Fries D, et al. The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review[J]. Scand J Trauma Resusc Emerg Med, 2016, 24: 48.
[8]Gao L, Lipowsky HH. Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes[J]. Microvasc Res, 2010, 80(3): 394-401.[9]公茂磊. 调整剪切力抑制内皮细胞多糖包被降解对血管通透性影响的研究[D]. 北京协和医学院, 2013.
[10]Rahbar E, Cardenas JC, Baimukanova G, et al. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients[J]. J Transl Med, 2015, 13: 117.
[11]Chelazzi C, Villa G, Mancinelli P, et al. Glycocalyx and sepsis-〖JP〗induced alterations in vascular permeability[J]. Crit Care, 2015, 19: 26.
[12]Reitsma S, Slaaf DW, Vink H, et al. The endothelial glycocalyx: composition, functions, and visualization[J]. Pflugers Arch, 2007, 454(3): 345-359.
[13]Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer[J]. Annu Rev Biomed Eng, 2007, 9(1): 121-167.
[14]Van Teeffelen JW, Brands J, Stroes ES, et al. Endothelial glycocalyx: sweet shield of blood vessels[J]. Trends Cardiovasc Med, 2007, 17(3): 101-105.
[15]Adamson RH, Lenz JF, Zhang X, et al. Oncotic pressures opposing filtration across non-fenestrated rat microvessels[J]. J Physiol, 2004, 557(Pt 3): 889-907.
[16]Pries AR, Secomb TW, Gaehtgens P. The endothelial surface layer[J]. Pflugers Arch, 2000, 440(5): 653-666.
[17]Kolárˇová H, Ambruzová B, Svihálková indlerová L, et al. Modulation of endothelial glycocalyx structure under inflammatory conditions[J]. Mediators Inflamm, 2014, 2014: 694 312.
[18]Curry FR. Microvascular solute and water transport[J]. Microcirculation, 2005, 12(1): 17-31.
[19]van Haaren PM, VanBavel E, Vink H, et al. Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy[J]. Am J Physiol Heart Circ Physiol, 2003, 285(6): H2848-2856.
[20]Chappell D, Westphal M, Jacob M. The impact of the glycocalyx on microcirculatory oxygen distribution in critical illness[J]. Curr Opin Anaesthesiol, 2009, 22(2): 155-162.
[21]Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface[J]. Arterioscler Thromb Vasc Biol, 2003, 23(9): 1541-1547.
[22]Christaki E, Opal SM. Is the mortality rate for septic shock really decreasing[J]. Curr Opin Crit Care, 2008, 14(5): 580-586.
[23]Gunst J, Derese I, Aertgeerts A, et al. Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness[J]. Crit Care Med, 2013, 41(1): 182-194.
[24]Schouten M, Wiersinga WJ, Levi M. Inflammation, endothelium, and coagulation in sepsis[J]. J Leuko Biol, 2008, 83(3): 536-545.
[25]Ryan US, Ryan JW. The ultrastructural basis of endothelial cell surface functions[J]. Biorheology, 1984, 21(1-2): 155-170.
[26]Katritsis D, Kaiktsis L, Chaniotis A, et al. Wall shear stress: theoretical considerations and methods of measurement[J]. Prog Cardiovasc Dis, 2007, 49(5): 307-329.
[27]Mochizuki S, Vink H, Hiramatsu O, et al. Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release[J]. Am Am J Physiol Heart Circ Physiol, 2003, 285(2): H722-726.
[28]Gouverneur M, Spaan JA, Pannekoek H, et al. Fluid shear stress stimulates incorporation of hyaluronan into endothelial cell glycocalyx[J]. Am J Physiol Heart Circ Physiol, 2006, 290(1): H458-462.
[29]Kozar RA, Pati S. Syndecan-1 restitution by plasma after hemorrhagic shock[J]. J Trauma Acute Care Surg, 2015, 78(6 Suppl 1): S83-S86.
[30]Peng Z, Pati S, Potter D, et al. Fresh frozen plasma lessens pulmonary endothelial inflammation and hyperpermeability after hemorrhagic shock and is associated with loss of syndecan-1[J]. Shock, 2013, 40(3): 195-202.
[31]Haywood-Watson RJ, Holcomb JB, Gonzalez EA, et al. Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation[J]. PLoS One, 2011, 6(8): e23 530.
[32]Sadir R, Forest E, Lortat-Jacob H. The heparan sulfate binding sequence of interferon-gamma increased the on rate of the interferon-gamma-interferon- gamma receptor complex formation[J]. J Biol Chem, 1998, 273(18): 10 919-10 925.
[33]Imai T, Hieshima K, Haskell C, et al. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion[J]. Cell, 1997, 91(4): 521-530.
[34]Umehara H, Bloom ET, Okazaki T, et al. Fractalkine in vascular biology: from basic research to clinical disease[J]. Arterioscler Thromb Vasc Biol, 2004, 24(1): 34-40.
[35]Hiscott J, Marois J, Garoufalis J, et al. Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter:evidence for a positive autoregulatory loop[J]. Mol Cell Biol, 1993, 13(10): 6231-6240.
[36]Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion[J]. Circulation, 2000, 101(13): 1500-1502.
[37]van Zyl N, Milford EM, Diab S, et al. Activation of the protein C pathway and endothelial glycocalyx shedding is associated with coagulopathy in an ovine model of trauma and hemrrhage[J]. J Trauma Acute Care Surg, 2016, 81(4): 674-684.
[38]Diebel LN, Martin JV, Liberati DM. Microfluidics: A high throughput system for the assessment of the endotheliopathy of trauma and the effect of timing of plasma administration on ameliorating shock associated endothelial dysfunction[J]. J Trauma Acute Care Surg, 2017, 28.
[39]Bruhn PJ, Nikolian VC, Halaweish I, et al. Tubastatin A prevents 〖JP〗hemorrhage-induced endothelial barrier dysfunction[J]. J Trauma Acute Care Surg, 2018, 84(2):386-392.
[40]崔娜. 感染相关血管通透性异常的基础与临床研究[D]. 北京协和医学院, 2013.
[41]Kozar RA, Peng Z, Zhang R, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock[J]. Anesth Analg, 2011, 112(6): 1289-1295.[42]Torres LN, Chung KK, Salgado CL, et al. Low-volume resuscitation with normal saline is associated with microvascular endothelial dysfunction after hemorrhage in rats, compared to colloids and balanced crystalloids[J]. Crit Care, 2017, 21(1): 160.
[43]Torres LN, Sondeen JL, Ji L, et al. Evaluation of resuscitation fluids on endothelial glycocalyx, venular blood flow, and coagulation function after hemorrhagic shock in rats[J]. J Trauma Acute Care Surg, 2013, 75(5): 759-766.