龙泓伶,徐昉,廖晓辉. p53在急性肾损伤中的研究进展[J]. 中国急救医学, 2019, 39(10): 1007-1010.
Long Hong-ling, Xu Fang, Liao Xiao-hui. The research progress of p53 in acute kidney injury. Chinese Journal of Critical Care Medicine, 2019, 39(10): 1007-1010.
[1]Fang Y, Teng J, Ding X. Acute kidney injury in China[J]. Hemodial Int, 2015, 19(1): 2-10.
[2]Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill[J]. Nat Rev Mol Cell Biol, 2015, 16(7): 393-405.
[3]Qu D, Jiang M, Huang D, et al. Synergistic effects of the enhancements to mitochondrial ROS, p53 activation and apoptosis generated by aspartame and potassium sorbate in HepG2 cells[J]. Molecules, 2019, 24(3). pii: e457.
[4]Saldana-Meyer R, Recillas-Targa F. Transcriptional and epigenetic regulation of the p53 tumor suppressor gene[J]. Epigenetics, 2011, 6(9):1068-1077.
[5]Kelly KJ, Plotkin Z, Vulgamott SL, et al. P53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: protective role of a p53 inhibitor[J]. J Am Soc Nephrol, 2003, 14(1): 128-138.
[6]Molitoris BA, Dagher PC, Sandoval RM, et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury[J]. J Am Soc Nephrol, 2009, 20(8): 1754-1764.
[7]Ying Y, Kim J, Westphal SN, et al. Targeted deletion of p53 in the proximal tubule prevents ischemic renal injury[J]. J Am Soc Nephrol, 2014, 25(12): 2707-2716.
[8]Zhang D, Liu Y, Wei Q, et al. Tubular p53 regulates multiple genes to mediate AKI[J]. J Am Soc Nephrol, 2014, 25(10): 2278-2289.
[9]Zhou L, Fu P, Huang XR, et al. Activation of p53 promotes renal injury in acute aristolochic acid nephropathy[J]. J Am Soc Nephrol, 2010, 21(1): 31-41.
[10]Wei Q, Dong G, Yang T, et al. Activation and involvement of p53 in cisplatin-induced nephrotoxicity[J]. Am J Physiol Renal Physiol, 2007, 293(4): F1282-1291.
[11]Chen J, Wang J, Li H, et al. p53 activates miR-192-5p to mediate vancomycin induced AKI[J]. Sci Rep, 2016, 6: 38 868.
[12]Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation[J]. Antioxid Redox Signa, 2014, 20(3): 460-473.
[13]Ko GJ, Bae SY, Hong YA, et al. Radiocontrast-induced nephropathy is attenuated by autophagy through regulation of apoptosis and inflammation[J]. Hum Exp Toxicol, 2016, 35(7): 724-736.
[14]Howell GM, Gomez H, Collage RD, et al. Augmenting autophagy to treat acute kidney injury during endotoxemia in mice[J]. PLoS One, 2013, 8(7): e69 520.
[15]Kaushal GP, Shah SV. Autophagy in acute kidney injury[J]. Kidney Int, 2016, 89(4): 779-791.
[16]Jing Z, Han W, Sui X, et al. Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers[J]. Cancer Lett, 2015, 356(2 Pt B): 332-338.
[17]Periyasamy-Thandavan S, Jiang M, Wei Q, et al. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells[J]. Kidney Int, 2008, 74(5): 631-640.
[18]Xie SB, He XX, Yao SK. Matrine-induced autophagy regulated by p53 through AMP-activated protein kinase in human hepatoma cells[J]. Int J Oncol, 2015, 47(2): 517-526.
[19]Kenzelmann Broz D, Spano Mello S, Bieging KT, et al. Global genomic profiling reveals an extensive p53-regulated autophagy program contributing to key p53 responses[J]. Genes Dev, 2013, 27(9): 1016-1031.
[20]Bensaad K, Cheung EC, Vousden KH. Modulation of intracellular ROS levels by TIGAR controls autophagy[J]. EMBO J, 2009, 28(19): 3015-3026.
[21]Tang C, Han H, Yan M, et al. PINK1-PRKN/PARK2 pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury[J]. Autophagy, 2018, 14(5): 880-897.
[22]Zhao C, Chen Z, Xu X, et al. Pink1/Parkin-mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial cells injury[J]. Exp Cell Res, 2017, 350(2): 390-397.
[23]Hoshino A, Mita Y, Okawa Y, et al. Cytosolic p53 inhibits parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart[J]. Nat Commun, 2013, 4: 2308.
[24]Goiran T, Duplan E, Rouland L, et al. Nuclear p53-mediated repression of autophagy involves PINK1 transcriptional down-regulation[J]. Cell Death Differ, 2018, 25(5): 873-884.
[25]Vaseva AV, Marchenko ND, Ji K, et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis[J]. Cell, 2012, 149(7): 1536-1548.
[26]Hao J, Wei Q, Mei S, et al. Induction of microRNA-17-5p by p53 protects against renal ischemia-reperfusion injury by targeting death receptor 6[J]. Kidney Int, 2017, 91(1): 106-118.
[27]Martin-Sanchez D, Ruiz-Andres O, Poveda J, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI[J]. J Am Soc Nephrol, 2017, 28(1): 218-229.
[28]Martin-Sanchez D, Fontecha-Barriuso M, Carrasco S, et al. TWEAK and RIPK1 mediate a second wave of cell death during AKI[J]. Proc Natl Acad Sci U S A, 2018, 115(16): 4182-4187.
[29]Moonen L, D′Haese PC, Vervaet BA. Epithelial cell cycle behaviour in the Injured Kidney[J]. Int J Mol Sci, 2018, 19(7): e2038.
[30]Emlet DR, Shaw AD, Kellum JA. Sepsis-associated AKI: epithelial cell dysfunction[J]. Semin Nephrol, 2015, 35(1): 85-95.
[31]Aregger F, Uehlinger DE, Witowski J, et al. Identification of IGFBP-7 by urinary proteomics as a novel prognostic marker in early acute kidney injury[J]. Kidney Int, 2014, 85(4): 909-919.
[32]Pabla N, Gibson AA, Buege M, et al. Mitigation of acute kidney injury by cell-cycle inhibitors that suppress both CDK4/6 and OCT2 functions[J]. Proc Natl Acad Sci U S A, 2015, 112(16): 5231-5236.
[33]DiRocco DP, Bisi J, Roberts P, et al. CDK4/6 inhibition induces epithelial cell cycle arrest and ameliorates acute kidney injury[J]. Am J Physiol Renal Physiol, 2014, 306(4): F379-388.
[34]Yang L, Besschetnova TY, Brooks CR, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury[J]. Nat Med, 2010, 16(5): 535-543.