摘要 目的 探讨可溶性CD74(sCD74)和巨噬细胞迁移抑制因子(MIF)对脓毒症致急性呼吸窘迫综合征(ARDS)患者的临床预警价值。 方法 本研究选择2014年1月至2017年12月期间在我院重症医学科就诊的脓毒症患者92例,根据入院1周内检查结果,38例患者脓毒症合并ARDS为ARDS组,54例患者未合并ARDS为非ARDS组,ARDS组根据氧合指数(PaO2/FiO2)分为轻度、中度和重度三个亚组。入院后24 h内采集静脉血,比较两组患者以及ARDS各亚组患者血液生化指标和PaO2 /FiO2。 结果 与非ARDS组比较,ARDS组入院24 h内,PaO2 /FiO2(315.77±72.59 vs. 174.62±56.98)、PCT(ng/mL:17.12±2.83 vs. 19.57±2.79)、CRP(mg/L:148.57±112.69 vs. 227.05±139.35)、MIF(ng/mL:46.39±15.52 vs. 84.46±16.87)、sCD74(ng/mL:35.18±10.26 vs. 76.29±11.84)水平差异有统计学意义(P<0.05)。 经多因素Logistic回归分析,PaO2 /FiO2降低以及MIF、PCT、sCD74水平升高是脓毒症患者发生ARDS的独立危险因素(P<0.05)。经ROC曲线分析,外周血MIF、PCT、sCD74水平以及联合诊断的曲线下面积分别为0.769(95%CI为0.145~0.872)、0.708(95%CI为0.443~0.827)、0.667(95%CI为0.515~0.781)及0.846(95%CI为0.708~0.894),检测效能比较差异有统计学意义(χ2=19.887,P<0.05)。外周血MIF、sCD74水平与ARDS严重程度有关(P<0.05)。 结论 血清MIF、sCD74有望成为脓毒症患者发生ARDS的早期预测因子。
樊 奇,吴丰学,朱小芳. 可溶性CD74和巨噬细胞迁移抑制因子对脓毒症致急性呼吸窘迫综合征患者的临床价值分析[J]. 中国急救医学, 2019, 39(5): 457-461.
Fan Qi, Wu Feng-xue, Zhu Xiao-fang. The clinical value of sCD74 and MIF on acute respiratory distress syndrome in sepsis patients. Chinese Journal of Critical Care Medicine, 2019, 39(5): 457-461.
[1]瞿海龙,周英莲,刘鹏,等. 脓毒症致急性呼吸窘迫综合征的研究进展[J]. 医学研究与教育, 2016, 33(5): 30-34.
[2]Iskander KN, Osuchowski MF, Stearns-Kurosawa DJ, et al. Sepsis: multiple abnormalities, heterogeneous responses, and evolving understanding[J]. Physiol Rev, 2013, 93(3): 1247-1288.
[3]Delano MJ, Ward PA. The immune system′s role in sepsis progression, resolution and long-term outcome[J]. Immunol Rev, 2016, 274(1): 330-353.
[4]Ranganathan V, Ciccia F, Zeng F, et al. Macrophage Migration Inhibitory Factor Induces Inflammation and Predicts spinal Progression in Ankylosing Spondylitis[J]. Arthritis Rheumatol, 2017, 69(9):1796-1806.
[5]Kim BS, Stoppe C, Grieb G, et al. The clinical significance of the MIF homolog d-dopachrome tautomerase(MIF-2) and its circulating receptor(sCD74) in burn[J]. Burns, 2016, 42(6):1265-1276.
[6]Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock(Sepsis-3)[J]. JAMA, 2016, 315(8): 762-774.
[7]Fan E, Brodie D, Slutsky AS. Acute Respiratory Distress Syndrome: Advances in Diagnosis and Treatment[J]. JAMA, 2018, 319(7): 698-710.
[8]Armen SB, Freer CV, Showalter JW, et al. Improving Outcomes in Patients With Sepsis[J]. Am J Med Qual, 2016, 31(1): 56-63.
[9]Reiss LK, Schuppert A, Uhlig S. Inflammatory processes during acute respiratory distress syndrome: a complex system[J]. Curr Opin Crit Care, 2018, 24(1):1-9.
[10]Frhlich M, Wafaisade A, Mansuri A, et al. Which score should be used for posttraumatic multiple organ failure-Comparison of the MODS, Denver- and SOFA- Scores[J]. Scand J Trauma Resusc Emerg Med, 2016, 24(1): 130.
[11]Rahmel T. SSC International Guideline 2016 - Management of Sepsis and Septic Shock[J]. Anasthesiol Intensivmed Notfallmed Schmerzther, 2018, 53(2): 142-148.
[12]Shukla P, Rao GM, Pandey G, et al. Therapeutic interventions in sepsis: current and anticipated pharmacological agents[J]. Br J Pharmacol, 2014, 171(22): 5011-5031.
[13]Chen CH, Chen YL, Sung PH, et al. Effective protection against acute respiratory distress syndrome/sepsis injury by combined adipose-derived mesenchymal stem cells and preactivated disaggregated platelets[J]. Oncotarget, 2017, 8(47): 82 415-82 429.
[14]Lechien JR, Nassri A, Kindt N, et al. Role of macrophage migration inhibitory factor in head and neck cancer and novel therapeutic targets: A systematic review[J]. Head Neck, 2017, 39(12): 2573-2584.
[15]Donnelly SC, Haslett C, Reid PT, et al. Regulatory role for macrophage migration inhibitory factor in acute respiratory distress syndrome[J]. Nat Med, 1997, 3(3): 320-323.
[16]Gil-Yarom N, Radomir L, Sever L, et al. CD74 is a novel transcription regulator[J]. Proc Natl Acad Sci USA, 2017, 114(3): 562-567.
[17]Kok T, Wapenaar H, Wang K, et al. Discovery of chromenes as inhibitors of macrophage migration inhibitory factor[J]. Bioorg Med Chem, 2018, 26(5): 999-1005.