[1]Bernard GR, Artigas A, Brigham KL. The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination[J]. Am J Respir Crit Care Med, 1994, 149(3 Pt 1): 818-824.
[2]Villar J, Fernández RL, Ambrós A, et al. A clinical classification of the acute respiratory distress syndrome for predicting outcome and guiding medical therapy[J]. Crit Care Med, 2015, 43(2): 346-353.
[3]Dalli J, Montero-Melendez T, Norling LV, et al. Heterogeneity in neutrophil microparticles reveals distinct proteome and functional properties[J]. Mol Cell Proteomics, 2013, 12(8): 2205-2219.
[4]Angelillo-Scherrer A. Leukocyte-derived microparticles in vascular homeostasis[J]. Circ Res, 2012, 110(2): 356-369.
[5]Pluskota E, Woody NM, Szpak D, et al. Expression, activation, and function of integrin alphaMbeta2 (Mac-1) on neutrophil-derived microparticles[J]. Blood, 2008, 112(6): 2327-2335.
[6]Pitanga TN, de Arago Frana L, Rocha VC, et al.Neutrophil-derived microparticles induce myeloperoxidase-mediated damage of vascular endothelial cells[J]. BMC Cell Biol, 2014, 15:21.
[7]Johnson BL Ⅲ, Kuethe JW, Caldwell CC. Neutrophil derived microvesicles:emerging role of a key mediator to the immune response[J]. Endocr Metab Immune Disord Drug Targets, 2014, 14(3):210-217.
[8]高林,丁凤华,王向蒙,等. 血浆中性粒细胞来源微颗粒与ARDS患者氧合指数和机械通气的关系[J]. 中国急救医学, 2016, 36(10):900-903.
[9]Ko SF, Hsu SY, Chen CH, et al. Human lung cancer-derived microparticles enhanced angiogenesis and growth of hepatoma cells in rodent lung parenchyma[J]. Am J Transl Res, 2016, 8(3): 1302-1318.
[10]Smith KM, Mrozek JD, Simonton SC, et al. Prolonged partial liquid ventilation using conventional and high-frequency ventilatory techniques: gas exchange and lung pathology in an animal model of respiratory distress syndrome[J]. Crit Care Med, 1997, 25(11):1888-1897.
[11]Wu D, Pan P, Qin Q. Research progress of pathogenesis of acute lung injury/acute respiratory distress syndrome[J]. Zhonghua Jie He He Hu Xi Za Zhi, 2015, 38(7):524-527.
[12]Johnson BL 3rd, Midura EF, Prakash PS, et al. Neutrophil derived microparticles increase mortality and the counter-inflammatory response in a murine model of sepsis[J]. Biochim Biophys Acta, 2017, 1863(10 Pt B):2554-2563.
[13]Li H, Meng X, Gao Y, et al. Isolation and phenotypic characteristics of microparticles in acute respiratory distress syndrome[J]. Int J Clin Exp Pathol, 2015, 8(2):1640-1648.
[14]Guervilly C, Lacroix R, Forel JM, et al. High levels of circulating leukocyte microparticles are associated with better outcome in acute respiratory distress syndrome[J]. Crit Care, 2011, 15(1):R31.
[15]Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome[J]. J Pathol, 2004, 202(2): 145-156.
[16]Walter JM, Wilson J, Ware LB. Biomarkers in acute respiratory distress syndrome: from pathobiology to improving patient care[J]. Expert Rev Respir Med, 2014, 8(5):573-586.
[17]Armstrong L, Milla AB. Relative production of tumor necrosis factor alpha and interleukin 10 in adult respiratory distress syndrome[J]. Thorax, 1997, 52(5): 442-446.
[18]Ma CH, Liu JP, Qu R, et al. Tectorigenin inhibits the inflammation of LPS-induced acute lung injury in mice[J]. Chin J Nat Med, 2014, 12(11):841-846.
[19]王婷, 梁华平, 柴鉴深,等. 三种大鼠急性肺损伤模型的比较[J]. 成都医学院学报, 2016, 11(1):5-9