窦志敏,林庆玲,曹永强,李斌,刘健. 潮气量负荷试验在机械通气脓毒症患者容量反应性评估中的应用[J]. 中国急救医学, 2019, 39(4): 366-370.
Dou Zhi-min, Lin Qing-ling, Cao Yong-qiang, Li Bin, Liu Jian. Effect of tidal volume challenge on fluid responsiveness in septic patients with mechanical ventilation. Chinese Journal of Critical Care Medicine, 2019, 39(4): 366-370.
[1]Rivers E, Nguyen B, Havstad S, et al. Early goal directed therapyin the treatment of severe sepsis and septic shock[J]. N Engl J Med, 2001, 345(19): 1368-1377.
[2]Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis[J]. Crit Care, 2015, 19: 251.
[3]Sakr Y, Rubatto Birri PN, Kotfis K, et al. Higher Fluid Balance Increases the Risk of Death From Sepsis: Results From a Large International Audit[J]. Crit Care Med, 2017, 45(3): 386-394.
[4]Monnet X, Teboul JL. Assessment of fluid responsiveness: recent advances[J]. Curr Opin Crit Care, 2018, 24(3): 190-195.
[5]Perel A, Pizov R, Cotev S. Respiratory variations in the arterial pressure during mechanical ventilation reflect volume status and fluid responsiveness[J]. Intensive Care Med, 2014, 40(6): 798-807.
[6]Yang X, Du B. Does pulse pressure variation predict fluid responsiveness in critically ill patients A systematic review and meta-analysis[J]. Crit Care, 2014, 18(6): 650.
[7]Hong JQ, He HF, Chen ZY, et al. Comparison of stroke volume variation with pulse pressure variation as a diagnostic indicator of fluid responsiveness in mechanically ventilated critically ill patients[J]. Saudi Med J, 2014, 35(3): 261-268.
[8]De Backer D, Heenen S, Piagnerelli M, et al. Pulse pressure variations to predict fluid responsiveness: Influence of tidal volume[J]. Intensive Care Med, 2005, 31(4): 517-523.
[9]Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016[J]. Intensive Care Med, 2017, 43(3): 304-377.
[10]Levy MM, Evans LE, Rhodes A. The Surviving Sepsis Campaign Bundle: 2018 Update[J]. Crit Care Med, 2018, 46(6): 997-1000.
[11]Benes J, Kirov M, Kuzkov V, et al. Fluid Therapy: Double-Edged Sword during Critical Care[J]. Biomed Res Int, 2015, 2015: 729 075.
[12]Malbrain MLNG, Van Regenmortel N, Saugel B, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D′s and the four phases of fluid therapy[J]. Ann Intensive Care, 2018, 8(1): 66.
[13]Casey JD, Brown RM, Semler MW. Resuscitation fluids[J]. Curr Opin Crit Care, 2018, 24(6): 512-518.
[14]Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update[J]. Ann Intensive Care, 2016, 6(1): 111.
[15]Monnet X, Marik P, Teboul JL. Passive leg raising for predicting fluid responsiveness: a systematic review and meta-analysis[J]. Intensive Care Med, 2016, 42(12): 1935-1947.
[16]Perel A. The value of dynamic preload variables during spontaneous ventilation[J]. Curr Opin Crit Care, 2017, 23(4): 310-317.
[17]Mesquida J, Gruartmoner G, Ferrer R. Passive leg raising for assessment of volume responsiveness: a review[J]. Curr Opin Crit Care, 2017, 23(3): 237-243.
[18]Michard F, Boussat S, Chemla D, et al. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure[J]. Am J Respir Crit Care Med, 2000,162(1): 134-138.
[19]Cannesson M, Le Manach Y, Hofer CK, et al. Assessing the diagnostic accuracy of pulse pressure variations for the prediction of fluid responsiveness: a “Gray Zone” approach[J]. Anesthesiology, 2011, 115(2): 231-241.
[20]Min JJ, Gil NS, Lee JH, et al. Predictor of fluid responsiveness in the ′grey zone′: augmented pulse pressure variation through a temporary increase in tidal volume[J]. Br J Anaesth, 2017, 119(1): 50-56.