徐文心,封启明. 严重创伤患者纤溶异常的研究进展[J]. 中国急救医学, 2019, 39(2): 196-200.
Xu Wen-xin, Feng Qi-ming. The advances of fibrinolytic abnormalities in severe trauma patients. Chinese Journal of Critical Care Medicine, 2019, 39(2): 196-200.
[1]Spahn DR, Bouillon B, Cerny V, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline[J]. Crit Care, 2013, 17(2): R76.
[2]Wang SY, Li YH, Chi GB, et al. Injury-related fatalities in China: an under-recognised public-health problem[J]. Lancet, 2008, 372(9651): 1765-1773.
[3]Holcomb JB, del Junco DJ, Fox EE, et al. The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks[J]. JAMA Surg, 2013, 148(2): 127-136.
[4]Dobson GP, Letson HL, Sharma R, et al. Mechanisms of early trauma-induced coagulopathy: The clot thickens or not [J]. J Trauma Acute Care Surg, 2015, 79(2): 301-309.
[5]刘月高. 急性创伤性凝血病的最新研究进展[J]. 中国急救医学, 2016, 36(2): 186-190.
[6]Brohi K, Singh J, Heron M, et al. Acute traumatic coagulopathy[J]. J Trauma, 2003, 54(6): 1127-1130.
[7]Chang R, Cardenas JC, Wade CE, et al. Advances in the understanding of trauma-induced coagulopathy[J]. Blood, 2016, 128(8): 1043-1049.
[8]Kutcher ME, Ferguson AR, Cohen MJ. A principal component analysis of coagulation after trauma[J]. J Trauma Acute Care Surg, 2013, 74(5): 1223-1229; discussion 1229-1230.
[9]Kunitake RC, Howard BM, Kornblith LZ, et al. Individual clotting factor contributions to mortality following trauma[J]. J Trauma Acute Care Surg, 2017, 82(2): 302-308.
[10]Chin TL, Moore EE, Moore HB, et al. A principal component analysis of postinjury viscoelastic assays: clotting factor depletion versus fibrinolysis[J]. Surgery, 2014, 156(3): 570-577.
[11]Leeper CM, Neal MD, McKenna C, et al. Principal component analysis of coagulation assays in severely injured children[J]. Surgery, 2018, 163(4): 827-831.
[12]Moore HB, Moore EE, Gonzalez E, et al. Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: the spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy[J]. J Trauma Acute Care Surg, 2014, 77(6): 811-817.
[13]Van Haren RM, Thorson CM, Valle EJ, et al. Hypercoagulability after burn injury[J]. J Trauma Acute Care Surg, 2013, 75(1): 37-43.
[14]Van Haren RM, Valle EJ, Thorson CM, et al. Hypercoagulability and other risk factors in trauma intensive care unit patients with venous thromboembolism[J]. J Trauma Acute Care Surg, 2014, 76(2): 443-449.
[15]Moore HB, Moore EE, Liras IN, et al. Acute Fibrinolysis Shutdown after Injury Occurs Frequently and Increases Mortality: A Multicenter Evaluation of 2,540 Severely Injured Patients[J]. J Am Coll Surg, 2016, 222(4): 347-355.
[16]Gomez-Builes JC, Acuna SA, Nascimento B, et al. Harmful or Physiologic: Diagnosing Fibrinolysis Shutdown in a Trauma Cohort With Rotational Thromboelastometry[J]. Anesth Analg, 2018,127(4):840-849.
[17]Kluft C, Verheijen JH, Jie AF, et al. The postoperative fibrinolytic shutdown: a rapidly reverting acute phase pattern for the fast-acting inhibitor of tissue-type plasminogen activator after trauma[J]. Scand J Clin Lab Invest, 1985, 45(7): 605-610.
[18]Lisman T. Decreased Plasma Fibrinolytic Potential As a Risk for Venous and Arterial Thrombosis[J]. Semin Thromb Hemost, 2017, 43(2): 178-184.
[19]Moore HB, Moore EE, Lawson PJ, et al. Fibrinolysis shutdown phenotype masks changes in rodent coagulation in tissue injury versus hemorrhagic shock[J]. Surgery, 2015, 158(2): 386-392.
[20]Davenport RA, Guerreiro M, Frith D, et al. Activated Protein C Drives the Hyperfibrinolysis of Acute Traumatic Coagulopathy[J]. Anesthesiology, 2017, 126(1): 115-127.
[21]Hayakawa M, Sawamura A, Gando S, et al. A low TAFI activity and insufficient activation of fibrinolysis by both plasmin and neutrophil elastase promote organ dysfunction in disseminated intravascular coagulation associated with sepsis[J]. Thromb Res, 2012, 130(6): 906-913.
[22]周烨强. 严重创伤患者凝血与纤溶功能异常的临床研究[J]. 中国现代医生, 2013, 51(7): 51-53.
[23]Chapman MP, Moore EE, Ramos CR, et al. Fibrinolysis greater than 3% is the critical value for initiation of antifibrinolytic therapy[J]. J Trauma Acute Care Surg, 2013, 75(6): 961-967.
[24]Moore HB, Moore EE, Gonzalez E, et al. Hemolysis exacerbates hyperfibrinolysis, whereas platelolysis shuts down fibrinolysis: evolving concepts of the spectrum of fibrinolysis in response to severe injury[J]. Shock, 2015, 43(1): 39-46.
[25]Moore EE, Moore HB, Gonzalez E, et al. Postinjury fibrinolysis shutdown: Rationale for selective tranexamic acid[J]. J Trauma Acute Care Surg, 2015, 78(6 Suppl 1): S65-69.
[26]Chapman MP, Moore EE, Moore HB, et al. Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients[J]. J Trauma Acute Care Surg, 2016, 80(1): 16-25.
[27]Schochl H, Cadamuro J, Seidl S, et al. Hyperfibrinolysis is common in out-of-hospital cardiac arrest: results from a prospective observational thromboelastometry study[J]. Resuscitation, 2013, 84(4): 454-459.
[28]Brohi K, Cohen MJ, Ganter MT, et al. Acute coagulopathy of trauma: hypoperfusion induces systemic anticoagulation and hyperfibrinolysis[J]. J Trauma, 2008, 64(5): 1211-1217.
[29]Morton AP, Moore EE, Wohlauer MV, et al. Revisiting early postinjury mortality: are they bleeding because they are dying or dying because they are bleeding [J]. J Surg Res, 2013, 179(1): 5-9.
[30]Campbell JE, Meledeo MA, Cap AP. Comparative response of platelet fV and plasma fV to activated protein C and relevance to a model of acute traumatic coagulopathy[J]. PLoS One, 2014, 9(6): e99 181.
[31]Howard BM, Kornblith LZ, Cheung CK, et al. Inducing Acute Traumatic Coagulopathy In Vitro: The Effects of Activated Protein C on Healthy Human Whole Blood[J]. PLoS One, 2016, 11(3): e0 150 930.
[32]Cotton BA, Harvin JA, Kostousouv V, et al. Hyperfibrinolysis at admission is an uncommon but highly lethal event associated with shock and prehospital fluid administration[J]. J Trauma Acute Care Surg, 2012, 73(2): 365-370.
[33]Fries D, Martini WZ. Role of fibrinogen in trauma-induced coagulopathy[J]. Br J Anaesth, 2010, 105(2): 116-121.
[34]Levy JH, Welsby I, Goodnough LT. Fibrinogen as a therapeutic target for bleeding: a review of critical levels and replacement therapy[J]. Transfusion, 2014, 54(5): 1388-1405.
[35]Oshiro A, Yanagida Y, Gando S, et al. Hemostasis during the early stages of trauma: comparison with disseminated intravascular coagulation[J]. Crit Care, 2014, 18(2): R61.
[36]Rourke C, Curry N, Khan S, et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes[J]. J Thromb Haemost, 2012, 10(7): 1342-1351.
[37]Hagemo JS, Christiaans SC, Stanworth SJ, et al. Detection of acute traumatic coagulopathy and massive transfusion requirements by means of rotational thromboelastometry: an international prospective validation study[J]. Crit Care, 2015, 19: 97.
[38]Deras P, Villiet M, Manzanera J, et al. Early coagulopathy at hospital admission predicts initial or delayed fibrinogen deficit in severe trauma patients[J]. J Trauma Acute Care Surg, 2014, 77(3): 433-440.
[39]Hagemo JS, Stanworth S, Juffermans NP, et al. Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study[J]. Crit Care, 2014, 18(2): R52.
[40]Davenport R. Coagulopathy following major trauma hemorrhage: lytic, lethal and a lack of fibrinogen[J]. Crit Care, 2014, 18(3): 151.
[41]刘和平, 任峰. 血小板及冷沉淀输注对创伤大出血患者凝血功能的影响[J]. 创伤外科杂志, 2015, 17(6): 542-545.
[42]Wohlauer MV, Moore EE, Thomas S, et al. Early platelet dysfunction: an unrecognized role in the acute coagulopathy of trauma[J]. J Am Coll Surg, 2012, 214(5): 739-746.
[43]Cardenas JC, Wade CE, Cotton BA, et al. Teg Lysis Shutdown Represents Coagulopathy in Bleeding Trauma Patients: Analysis of the Proppr Cohort[J]. Shock, 2018. [Epub ahead of print]
[44]付鹤鹏, 张玉想. 危重症患者血小板功能的评估及其临床意义[J]. 中华危重病急救医学, 2018, 30(3): 284-288.
[45]Meledeo MA, Herzig MC, Bynum JA, et al. Acute traumatic coagulopathy: The elephant in a room of blind scientists[J]. J Trauma Acute Care Surg, 2017, 82(6 Suppl 1): S33-S40.
[46]Moore HB, Moore EE, Chapman MP, et al. Viscoelastic measurements of platelet function, not fibrinogen function, predicts sensitivity to tissue-type plasminogen activator in trauma patients[J]. J Thromb Haemost, 2015, 13(10): 1878-1887.
[47]Lance MD. A general review of major global coagulation assays: thrombelastography, thrombin generation test and clot waveform analysis[J]. Thromb J, 2015, 13: 1.
[48]Stein P, Kaserer A, Spahn GH, et al. Point-of-Care Coagulation Monitoring in Trauma Patients[J]. Semin Thromb Hemost, 2017, 43(4): 367-374.
[49]胡贵锋, 李俊杰, 尹文. 急重症患者血栓弹力图与传统凝血检查对比研究[J]. 中华急诊医学杂志, 2017, 26(9): 1043-1049.
[50]Meizoso JP, Karcutskie CA, Ray JJ, et al. Persistent Fibrinolysis Shutdown Is Associated with Increased Mortality in Severely Injured Trauma Patients[J]. J Am Coll Surg, 2017, 224(4): 575-582.
[51]Leeper CM, Neal MD, McKenna CJ, et al. Trending Fibrinolytic Dysregulation: Fibrinolysis Shutdown in the Days After Injury Is Associated With Poor Outcome in Severely Injured Children[J]. Ann Surg, 2017, 266(3): 508-515.
[52]Taylor JR, 3rd, Fox EE, Holcomb JB, et al. The hyperfibrinolytic phenotype is the most lethal and resource intense presentation of fibrinolysis in massive transfusion patients[J]. J Trauma Acute Care Surg, 2018, 84(1): 25-30.
[53]陈瑞娟, 望亭松, 车在前, 等. 血栓弹力图在判断脓毒症患者早期凝血功能异常中的价值[J]. 中国急救医学, 2014, 34(6): 490-493.
[54]Ponschab M, Voelckel W, Pavelka M, et al. Effect of coagulation factor concentrate administration on ROTEM(R) parameters in major trauma[J]. Scand J Trauma Resusc Emerg Med, 2015, 23: 84.
[55]Chowdhury M, Shore-Lesserson L, Mais AM, et al. Thromboelastograph with Platelet Mapping(TM) predicts postoperative chest tube drainage in patients undergoing coronary artery bypass grafting[J]. J Cardiothorac Vasc Anesth, 2014, 28(2): 217-223.
[56]Dadure C, Sauter M, Bringuier S, et al. Intraoperative tranexamic acid reduces blood transfusion in children undergoing craniosynostosis surgery: a randomized double-blind study[J]. Anesthesiology, 2011, 114(4): 856-861.
[57]Shakur H, Roberts I, Bautista R,et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial[J]. Lancet, 2010, 376(9734): 23-32.
[58]Moore EE, Moore HB, Gonzalez E, et al. Rationale for the selective administration of tranexamic acid to inhibit fibrinolysis in the severely injured patient[J]. Transfusion, 2016, 56 (Suppl 2): S110-114. [59]Meizoso JP, Dudaryk R, Mulder MB, et al. Increased risk of fibrinolysis shutdown among severely injured trauma patients receiving tranexamic acid[J]. J Trauma Acute Care Surg, 2018, 84(3): 426-432.
[60]刘业, 唐晓峰, 周晔, 等. 大量输血对急性创伤患者凝血功能和纤溶系统的影响[J]. 海南医学院学报, 2017, 23(6): 755-758.
[61]Matheu FA, McFaul SJ. Supernates from stored red blood cells inhibit platelet aggregation[J]. Transfusion, 2010, 50(6): 1196-1202.
[62]Holcomb JB, Tilley BC, Baraniuk S, et al. Transfusion of plasma, platelets, and red blood cells in a 1∶1∶1 vs a 1∶1∶2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial[J]. JAMA, 2015, 313(5): 471-482.
[63]Young PP, Cotton BA, Goodnough LT. Massive transfusion protocols for patients with substantial hemorrhage[J]. Transfus Med Rev, 2011, 25(4): 293-303.
[64]Gonzalez E, Moore EE, Moore HB, et al. Goal-directed Hemostatic Resuscitation of Trauma-induced Coagulopathy: A Pragmatic Randomized Clinical Trial Comparing a Viscoelastic Assay to Conventional Coagulation Assays[J]. Ann Surg, 2016, 263(6): 1051-1059.