摘要 目的 探究重症急性胰腺炎(severe acte pancreatitis, SAP)大鼠肠道菌群结构、细菌移位随病程延长发生的改变。 方法 随机情况下将健康SD大鼠分为对照组(Control 组n=10)、SAP组(n=30)。其中SAP组又分为6、12、24 h亚组(每亚组分别为10只大鼠)。按比例配置5%牛磺胆酸钠试剂,采用胰胆管逆行注射制作SAP模型。模型制备成功后分别于6、12、24 h后处死大鼠,检测血清淀粉酶、内毒素水平,观察胰腺及肠黏膜病理改变,用细菌培养法检测腹腔及脏器细菌移位率并用质谱仪鉴定培养出的阳性菌株,16S rDNA、实时荧光定量-聚合酶链式反应(real time-PCR)进行肠腔细菌定量分析。〖HTH〗结果〓〖HTSS〗SAP组6、12、24 h亚组大鼠血清淀粉酶较对照组升高明显,且>3倍以上(U/L:2086±686 vs. 8707±1672,9012±1505,8797±1298;P<0.01),胰腺组织及小肠黏膜出现明显病理损伤;随着病程延长,SAP组大鼠肠腔内大肠埃希菌不断增殖(×10-5:4.53±1.26 vs. 10.07±2.57,16.18±3.51,19.45±4.70;P<0.01),乳酸杆菌不断减少(×10-3:23.12±4.46 vs.11.43±2.68,5.20±2.07.2.02±0.94;P<0.01),同样双歧杆菌也不断减少(×10-5:23.30±6.00 vs. 17.61±3.94,13.21±2.84,9.49±3.41;P<0.01);血清内毒素检测阳性率、肠系膜淋巴结及腹腔脏器细菌移位率均不断升高(血清内毒素:0 vs. 30%,50%,60%;肝脏:0 vs. 20%,50%,70%;胰腺:0 vs. 30%,40%,60%;肠系膜淋巴结:0 vs. 40%,70%,80%;P<0.01)。 结论 SAP大鼠肠道黏膜屏障受损,肠道菌群紊乱,肠腔内需氧菌与厌氧菌比例倒置,随着病程延长,以大肠埃希菌为主的条件致病菌不断增值,乳酸杆菌、双歧杆菌等厌氧益生菌不断减少,致使肠腔细菌及内毒素移位,其与SAP并发的胰腺及全身感染存在一定关系,且随着病程延长不断加重。
满意,常加伟,汤亲青. 重症急性胰腺炎不同病程的细菌移位及肠道菌群组成结构的变化研究[J]. 中国急救医学, 2019, 39(1): 71-76.
Man Yi, Chang Jia-wei, Tang Qin-qing. Changes of bacterial translocation and composition of intestinal flora in different stages of severe acute pancreatitis. Chinese Journal of Critical Care Medicine, 2019, 39(1): 71-76.
[1]Zhao G, Zhang JG, Wu HS, et al.Effects of different resuscitation fluid on severe acute pancreatitis[J]. World J Gastroenterol, 2013, 19(13): 2044-2052.
[2]Fritz S, Hackert T, Hartwig W, et al. Bacterial translocation and infected pancreatic necrosis in acute necrotizing pancreatitis derives from small bowel rather than from colon[J]. Am J Surg, 2010, 200(1):111-117.[3]Sharma B, Srivastava S, Singh N, et al. Role of probiotics on gut permeability and endotoxemia in patients with acute pancreatitis: a double-blind randomized controlled trial[J]. J Clin Gastroenterol, 2011, 45(5): 442-448.
[4]孙正杰,黄坚,武正旺,等. 急性胰腺炎患者外周血髓源性抑制细胞表达膜型 B7-H3 的临床意义[J]. 中华急诊医学杂志, 2017, 26(11): 1290-1295.
[5]Liu ZH, Peng JS, Li CJ, et al. A simple taurocholate-induced model of severe acute pancreatitis in rats[J]. World JGastroenterol, 2009, 15(45):5732-5739.
[6]李燕,吴浩,邓一芸,等.重症急性胰腺炎大鼠肠黏膜屏障及肠道菌群的变化[J].生物医学工程学杂志, 2015, 32(2):412-417.
[7]宋美茹,姚萍.应用实时荧光定量PCR定量检测溃疡性结肠炎肠道大肠埃希菌、乳酸杆菌及双歧杆菌属的变化[J].中国微生态学杂志, 2012, 24(3):239-243.
[8]Shell WS, Sayed ML, Samy AA, et al. Using real-time polymerase chain reaction as an alternative rapid method for enumeration of colony count in live vaccines[J]. Vet World, 2017, 10(6):610-615.
[9]Sun X, Shao Y, Jin Y, Huai J, et al. Melatonin reduces bacterial translocation by preventing damage to the intestinal mucosa in an experimental severe acute pancreatitis rat model[J]. Exp Ther Med, 2013, 6(6): 1343-1349.
[10]Li JP, Yang J, Huang JR, et al. Immunosuppression and the infection caused by gut mucosal barrier dysfunction in patients with early severe acute pancreatitis[J]. Front Biosci(Landmark Ed), 2013, 18:892-900.
[11]Sakorafas GH, Sampanis D, Lappas C, et al. Necrotizing acute pancreatitis current status-emerging new strategies in surgical management[J]. Infect Disord Drug Targets, 2012, 12(2):138-143.
[12]Merilinen S, Mkel J, Koivukangas V, et al. Intestinal bacterial translocation and tight junction structure in acute porcine pancreatitis[J]. Hepatogastroenterology, 2012, 59(114):599-606.
[13]Tian R, Tan JT, Wang RL, et al. The role of intestinal mucosa oxidative stress in gut barrier dysfunction of severe acute pancreatitis[J]. Eur Rev Med Pharmacol Sci, 2013, 17(3):349-355.
[14]Tian R, Wang RL, Xie H, et al. Overexpressed miRNA-155 dysregulates intestinal epithelial apical junctional complex in severe acute pancreatitis[J]. World J Gastroenterol, 2013, 19(45):8282-8291.
[15]Zou ZD, Zhang ZZ, Wang L, et al. [The role of mesenteric lymph in pathogenesis of systemic inflammatory response syndrome and systemic complications following severe acute pancreatitis in rats][J]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2010, 22(4): 206-209.
[16]金魁,刘宝. 高压氧对大鼠急性胰腺炎影响的研究[J]. 中国急救医学,2010,30(2): 150-153.