苏成洋,尹路路,李小燕,钟春婷,耿男,庞燕,李培杰,曹雯. 亚甲蓝对脑缺血再灌注损伤保护机制的研究进展[J]. 中国急救医学, 2018, 38(9): 827-832.
Su Cheng-yang, Yin Lu-lu, Li Xiao-yan, Zhong Chun-ting, Geng Nan, Pang Yan, Li Pei-jie, Cao Wen. Research progress on the protective mechanism of methylene blue against cerebral ischemia and reperfusion injury. Chinese Journal of Critical Care Medicine, 2018, 38(9): 827-832.
[1]Chouchani ET, Pell VR, James AM, et al. A Unifying Mechanism for Mitochondrial Superoxide Production during Ischemia-Reperfusion Injury[J]. Cell Metab, 2016, 23(2):254-263.
[2]Lu Q, Tucker D, Dong Y, et al. Neuroprotective and Functional Improvement Effects of Methylene Blue in Global Cerebral Ischemia[J]. Mol Neurobiol, 2016, 53(8):5344-5355.
[3]Musatov A, Robinson NC. Susceptibility of mitochondrial electron-transport complexes to oxidative damage. Focus on cytochrome coxidase[J]. Free Radic Res, 2012, 46(11):1313-1326.
[4]Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 2014, 94(3):909-950.
[5]Raz L, Zhang QG, Zhou CF, et al. Role of Rac1 GTPase in NADPH oxidase activation and cognitive impairment following cerebral ischemia in the rat[J]. PloS One, 2010, 5(9):e12 606.
[6]Lu Q, Wainwright MS, Harris VA, et al. Increased NADPH oxidase-derived superoxide is involved in the neuronal cell death induced by hypoxia-ischemia in neonatal hippocampal slice cultures[J]. Free Radic Biol Med, 2012, 53(5):1139-1151.
[7]Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle[J]. Am J Physiol Cell Physiol, 2004, 287(4):C817-833.
[8]Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: A double edged sword in ischemia/reperfusion vs preconditioning[J]. Redox Biol, 2014, 2(1):702-714.
[9]Chan PH. Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia[J]. Neurochem Res, 2004, 29 (11): 1943-1949.
[10]Chen H, Yoshioka H, Kim GS, et al. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection[J]. Antioxid Redox Signal, 2011, 14(8):1505-1517.[11]Sanderson TH, Reynolds CA, Kumar R, et al. Molecular Mechanisms of Ischemia-Reperfusion Injury in Brain: Pivotal Role of the Mitochondrial Membrane Potential in Reactive Oxygen Species Generation[J]. Mol Neurobiol, 2013, 47(1):9-23.
[12]Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke[J]. J Neuroimmunol, 2007, 184(1-2):53-68.
[13]del Zoppo G, Ginis I, Hallenbeck JM, et al. Inflammation and stroke: putative role for cytokines, adhesion molecules and iNOS in brain response to ischemia[J]. Brain Pathol, 2000, 10(1):95-112.
[14]Denes A, Wilkinson F, Bigger B, et al. Central and haematopoietic interleukin-1 both contribute to ischaemic brain injury in mice[J]. Dis Model Mech, 2013, 6(4):1043-1048.
[15]Pradillo JM, Denes A, Greenhalgh AD, et al. Delayed administration of interleukin-1 receptor antagonist reduces ischemic brain damage and inflammation in comorbid rats[J]. J Cereb Blood Flow Metab, 2012, 32(9):1810-1819.
[16]Yuan J. Neuroprotective strategies targeting apoptotic and necroticcell death for stroke[J]. Apoptosis, 2009, 14(4):469-477.
[17]Chen CH, Jiang Z, Yan JH, et al. The involvement of programmed cell death 5 (PDCD5) in the regulation of apoptosis in cerebral ischemia/reperfusion injury[J]. CNS Neurosci Ther, 2013, 19(8):566-576.
[18]Rossé T, Olivier R, Monney L, et al. Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c[J]. Nature, 1998, 391(6666):496-499.
[19]Maharjan S, Oku M, Tsuda M, et al. Mitochondrial impairment triggers cytosolic oxidative stress and cell death following proteasome inhibition[J]. Sci Rep, 2014, 4:5896.
[20]Ge P, Luo Y, Liu CL, et al. Protein aggregation and proteasome dysfunction after brain ischemia[J]. Stroke, 2007, 38(12):3230-3236.
[21]Massaad CA. Neuronal and vascular oxidative stress in Alzheimer′sdisease[J]. Curr Neuropharmacol, 2011, 9(4):662-673.
[22]Lee CH, Yan B, Yoo KY, et al. Ischemia-induced changes in glucagon-like peptide-1 receptor and neuroprotective effect of its agonist, exendin-4, in experimental transient cerebral ischemia[J]. J Neurosci Res, 2011, 89(7):1103-1113.
[23]Atamna H, Kumar R. Protective role of methylene blue in Alzheimer′s disease via mitochondria and cytochrome coxidase[J]. J Alzheimers Dis, 2010, 20 (Suppl 2):S439-452.
[24]Ohlow MJ, Moosmann B. Phenothiazine: the seven lives of pharmacology′s first lead structure[J]. Drug Discov Today, 2011, 16(3-4):119-131.
[25]Rojas JC, Simola N, Kermath BA, et al. Striatal neuroprotection with methylene blue[J]. Neuroscience, 2009, 163(3):877-889.
[26]Rojas JC, John JM, Lee J, et al. Methylene Blue Provides Behavioral and Metabolic Neuroprotection Against Optic Neuropathy[J]. Neurotoxicity Research, 2009, 15(3):260-273.
[27]Pelgrims J, De Vos F, Van den Brande J, et al. Methylene blue in the treatment and prevention of ifosfamide-induced encephalopathy: Report of 12 cases and a review of the literature[J]. Br J Cancer, 2000, 82(2):291-294.
[28]Roy Choudhury G, Winters A, Rich RM, et al. Methylene blue protects astrocytes against glucose oxygen deprivation by improving cellular respiration[J]. PloS One, 2015, 10(4):e0 123 096.
[29]Muratsubaki H, Yajima N, Yoneda H, et al. Methylene blue protection against hypoxic injury in primary cultures of rat hepatocyte monolayers[J]. Cell Biochem Funct, 2008, 26(2):275-278.
[30]Oz M, Lorke DE, Petroianu GA. Methylene blue and Alzheimer′s disease[J]. Biochemical Pharmacology, 2009, 78(8):927-932.
[31]Di Y, He YL, Zhao T, et al. Methylene Blue Reduces Acute Cerebral Ischemic Injury via the Induction of Mitophagy[J]. Mol Med, 2015, 21:420-429.
[32]Wen Y, Li W, Poteet EC, et al. Alternative Mitochondrial Electron Transfer as a Novel Strategy for Neuroprotection[J]. J Biol Chem, 2011, 286(18):16 504-16 515.
[33]Jiang Z,Watts LT,Huang S,et al. The Effects of Methylene Blue on Autophagy and Apoptosis in MRI-Defined Normal Tissue, Ischemic Penumbra and Ischemic Core[J]. PLoS One, 2015, 10 (6), e0 131 929.
[34]Shen Q, Du F, Huang S, et al. Neuroprotective efficacy of methylene blue in ischemic stroke: an MRI study[J]. PloS One, 2013, 8(11):e79 833.
[35]Young GB. Clinical practice. Neurologic prognosis after cardiac arrest[J]. N Engl J Med, 2009, 361(6):605-611.
[36]Colbourne F, Sutherland G, Corbett D. Postischemic hypothermia. A critical appraisal with implications for clinical treatment[J]. Mol Neurobiol, 1997, 14(3):171-201.
[37]Miclescu A, Sharma HS, Martijn C, et al. Methylene blue protects the cortical blood-brain barrier against ischemia/reperfusion-induced disruptions[J]. Crit Care Med, 2010, 38(11):2199-2206.
[38]Sharma HS, Miclescu A, Wiklund L. Cardiac arrest-induced regional blood-brain barrier breakdown, edema formation and brain pathology: a light and electron microscopic study on a new model for neurodegeneration and neuroprotection in porcine brain[J]. J Neural Transm(Vienna), 2011, 118(1):87-114.
[39]Gabrielli D, Belisle E, Severino D, et al. Binding, aggregation and photochemical properties of methylene blue in mitochondrial suspensions[J]. Photochem Photobiol, 2004, 79(3):227-232.
[40]Atamna H, Nguyen A, Schultz C, et al. Methylene blue delays cellular senescence and enhances key mitochondrial biochemical pathways[J]. FASEB J, 2008, 22(3):703-712.
[41]de la Torre JC, Cada A, Nelson N, et al. Reduced cytochrome oxidase and memory dysfunction after chronic brain ischemia in aged rats[J]. Neurosci Lett, 1997, 223(3):165-168.
[42]Callaway NL, Riha PD, Wrubel KM, et al. Methylene blue restores spatial memory retention impaired by an inhibitor of cytochrome oxidase in rats[J]. Neurosci Lett, 2002, 332(2):83-86.
[43]Poteet E, Winters A, Yan LJ, et al. Neuroprotective actions of methylene blue and its derivatives[J]. PloS One, 2012, 7(10):e48 279.
[44]Brinkkoetter PT, Song H, L sel R, et al. Hypothermic injury: the mitochondrial calcium, ATP and ROS love-hate triangle out of balance[J]. Cell Physiol Biochem, 2008, 22(1-4):195-204.
[45]Tian WF, Zeng S, Sheng Q, et al. Methylene Blue Protects the Isolated Rat Lungs from Ischemia-Reperfusion Injury by Attenuating Mitochondrial Oxidative Damage[J]. Lung, 2018,196(1):73-82.
[46]Li P, He QP, Ouyang YB, et al. Early release of cytochrome C and activation of caspase-3 in hyperglycemic rats subjected to transient forebrain ischemia[J]. Brain Res, 2001, 896(1-2):69-76.
[47]Ikeda Y, Shirakabe A, Maejima Y, et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress Novelty and significance[J]. Circulation Research, 2015, 116(2):264-278.
[48]Wu H, Xue D, Chen G, et al. The BCL2L1 and PGAM5 axis defines hypoxia-induced receptor-mediated mitophagy[J]. Autophagy, 2014, 10(10):1712-1725.
[49]Kubli DA, Gustafsson B. Mitochondria and mitophagy: the yin and yang of cell death control[J]. Circ Res, 2012, 111(9):1208-1221.
[50]Feng X, Liu X, Zhang W, et al. p53 directly suppresses BNIP3 expression to protect against hypoxia-induced cell death[J]. EMBO J,2011, 30(16): 3397-3415.
[51]Tasdemir E, Maiuri MC, Galluzzi L, et al. Regulation of autophagyby cytoplasmic p53[J]. Nat Cell Biol, 2008, 10(6):676-687.
[52]Xie L, Li W, Winters A, et al. Methylene blue induces macroautophagy through 5′ adenosine monophosphate-activated protein kinase pathway to protect neurons from serum deprivation[J]. Front Cell Neurosci, 2013, 7:56.
[53]Fenn AM, Skendelas JP, Moussa DN, et al. Methylene blue attenuates traumatic brain injury-associated neuroinflammation and acute depressive-like behavior in mice[J]. J Neurotrauma,2015, 32(2):127-138.
[54]Kwilasz AJ, Grace PM, Serbedzija P, et al. The therapeutic potential of interleukin-10 in neuroimmune diseases[J]. Neuropharmacology, 2015, 96(Pt A):55-69.
[55]Bachis A, Colangelo AM, Vicini S, et al. Interleukin-10 prevents glutamate-mediated cerebellar granule cell death by blocking caspase-3-like activity[J]. J Neurosci, 2001, 21(9):3104-3112.
[56]Zhou Z, Peng X, Insolera R, et al. Interleukin-10 provides direct trophic support to neurons[J]. J Neurochem, 2009, 110(5):1617-1627.
[57]Boyd ZS, Kriatchko A,Yang J,et al. Interleukin-10 receptor signaling through STAT-3 regulates the apoptosis of retinal ganglion cells in response to stress[J]. Invest Ophthalmol Vis Sci, 2003, 44 (12), 5206-5211.
[58]Sharma S, Yang B, Xi X, et al. IL-10 directly protects cortical neurons by activating PI-3 kinase and STAT-3 pathways[J]. Brain Res, 2011, 1373:189-194.
[59]Turovskaya MV, Turovsky EA, Zinchenko VP, et al. Interleukin-10 modulates [Ca2+]i response induced by repeated NMDA receptor activation with brief hypoxia through inhibition of InsP(3)-sensitive internal stores in hippocampal neurons[J]. Neurosci Lett, 2012, 516(1):151-155.
[60]Obrenovitch TP, Urenjak J. Altered glutamatergic transmission in neurological disorders: From high extracellular glutamate to excessive synaptic efficacy[J]. Prog Neurobiol, 1997, 51(1):39-87.
[61]Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury[J]. Trends Neurosci, 1997, 20(3):132-139.
[62]Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia[J]. Stroke, 1997, 28(6):1283-1288.
[63]Dawson VL, Dawson TM. Nitric oxide neurotoxicity[J]. J Chem Neuroanat, 1996, 10(3-4):179-190.
[64]Huang C, Tong L, Lu X, et al. Methylene Blue Attenuates iNOS Induction Through Suppression of Transcriptional Factor Binding Amid iNOS mRNA Transcription[J]. J Cell Biochem, 2015, 116(8):1730-1740.
[65]Jiang MH, Kaku T, Hada J, et al. Different effects of eNOS and nNOS inhibition on transient forebrain ischemia[J]. Brain Res, 2002, 946(1):139-147.
[66]Wolin MS, Cherry PD, Rodenburg JM, et al. Methylene blue inhibits vasodilation of skeletal muscle arterioles to acetylcholine and nitric oxide via the extracellular generation of superoxide anion[J]. J Pharmacol Exp Ther, 1990, 254(3):872-876.
[67]Gruetter CA, Kadowitz PJ, Ignarro LJ. Methylene blue inhibits coronary arterial relaxation and guanylate cyclase activation by nitroglycerin, sodium nitrite, and amyl nitrite[J]. Can J Physiol Pharmacol, 1981, 59(2):150-156.
[68]Mayer B, Brunner F, Schmidt K. Inhibition of nitric oxide synthesis by methylene blue[J]. Biochem Pharmacol, 1993, 45(2):367-374.
[69]Wei G, Dawson VL, Zweier JL. Role of neuronal and endothelial nitric oxide synthase in nitric oxide generation in the brain following cerebral ischemia[J]. Biochim Biophys Acta, 1999, 1455(1):23-34.