摘要 目的 观察氢化可的松对感染性休克患者炎症因子和miRNA-122a的影响。 方法 选取2016年12月至2018年12月沧州市中心医院急诊重症监护室(EICU)收治的125例感染性休克患者为研究对象,随机法分为常规治疗组65例,氢化可的松组60例。常规治疗组给予常规综合治疗,氢化可的松组在常规治疗基础上给予氢化可的松200 mg/d,持续静脉给药,疗程7 d。分别在治疗前和治疗后3、7 d应用酶联免疫吸附试验(ELISA)测定血清肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)、高迁移率族蛋白B-1 (HMGB-1)的水平,定量即时聚合酶链锁反应(qRT-PCR)法检测血清miRNA-122a的表达水平;对比两组患者APACHE Ⅱ评分、SOFA评分、肝功能、血管活性药物使用时间、EICU治疗时间及28 d病死率。 结果 治疗前,两组患者血清TNF-α、IL-6、HMGB-1、miRNA-122a差异无统计学意义(P>0.05)。氢化可的松组各指标均低于常规治疗组[TNF-α(pg/mL):治疗后3 d 146.29±19.34 vs. 165.26±16.45,治疗后7 d 118.63±20.48 vs. 125.83±16.87;IL-6(pg/mL):治疗后3 d 150.73±15.36 vs. 237.62±18.45,治疗后7 d 124.35±16.28 vs. 149.94±19.64;HMGB-1(ng/mL):治疗后3 d 7.78±1.06 vs. 11.72±1.25,治疗后7 d 2.49±0.50 vs. 3.87±0.64;miRNA-122a:治疗后3 d 1.42±0.46 vs. 1.95±0.37,治疗后7 d 0.86±0.15 vs. 1.18±0.29;P<0.01]。与常规治疗组比较氢化可的松组患者肝功能明显好转[ALT(U/L):治疗后3 d 77(120.3) vs. 72.8(112.4),治疗后7 d 69(28.2) vs. 62.5(20.9);AST(U/L):治疗后3 d 80.4(118.5) vs. 76.7(105.8),治疗后7 d 73.6(29.7) vs. 65.9(26.7);TBIL(mg/dL):治疗后3 d 1.7(3.4) vs. 1.6(2.7),治疗后7 d 1.5(0.9) vs. 1.4(0.8);P<0.01]。EICU治疗时间明显缩短(d:15.4±6.5 vs. 10.7±5.3),差异有统计学意义(P<0.05),但28 d病死率未见降低(P>0.05)。 结论 氢化可的松可明显降低感染性休克患者血清中miRNA-122a的表达水平,降低炎症因子水平,减轻肝脏损伤,缩短EICU治疗时间,但并不能降低感染性休克患者的28 d病死率。
桑珍珍,高杰,贾春梅,李勇. 氢化可的松对感染性休克患者miRNA-122a和炎症因子的影响[J]. 中国急救医学, 2019, 39(9): 845-849.
Sang Zhen-zhen, Gao Jie, Jia Chun-mei, Li Yong. Effect of glucocorticoid on inflammatory cytokines and miRNA-122a in septic shock. Chinese Journal of Critical Care Medicine, 2019, 39(9): 845-849.
[1]Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock(sepsis-3.0)[J]. JAMA, 2016, 315(8):801-810.
[2]Rahmel T, Sch fer ST, Frey UH, et al. Increased circulating microRNA-122 is a biomarker for discrimination and risk stratification in patients defined by sepsis-3 criteria[J]. PLoS One, 2018, 13(5):e0 197 637.
[3]Ani C, Farshidpanah S, Bellinghausen Stewart A, et al. Variations in organism-specific severe sepsis mortality in the United States:1999-2008[J]. Crit Care Med, 2015, 43(1):65-77.
[4]Nastos C, Kalimeris K, Papoutsidakis N, et al. Global consequences of liver ischemia /reperfusion injury[J]. Oxid Med Cell Longev, 2014, 2014: 906 965.
[5]Mobergslien A, Sioud M. Exosome-derived miRNAs and cellular miRNAs activate innate immunity[J]. J Innate Immun, 2014, 6(1): 105-110.
[6]Friedrich K, Baumann C, Wannhoff A, et al. Serum miRNA-122 is an independent biomarker of survival in patients with primary sclerosing cholangitis[J]. J Gastrointestin Liver Dis, 2018, 27(2):145-150.
[7]Yang F, Li L, Yang R, et al. Identification of serum microRNAs as potential toxicological biomarkers for toosendanin-induced liver injury in mice[J]. Phytomedicine, 2019, 58:152 867.
[8]Jia YX, Pan CS, Yang JH, et al. Altered L-arginine/nitric oxide synthase/nitric oxide pathway in the vascular adventitia of rats with sepsis[J]. Clin Exp Pharmacol Physiol, 2006, 33(12):1202-1208.
[9]殷杰,杨晓燕,虞佳,等. miR-122表达载体的构建及其对Bcl-x L,Bcl-2 基因的抑制作用[J]. 中南医学科学杂志, 2013, 41(1):13-16.
[10]Rahmel T, Rump K, Adamzik M, et al. Increased circulating microRNA-122 is associated with mortality and acute liver injury in the acute respiratory distress syndrome[J]. BMC Anesthesiol, 2018,18(1):75.
[11]Kim SJ, Park JS, Lee DW, et al. Trichostatin a protects liver against septic injury through inhibiting toll-like receptor signaling[J]. Biomol ther (seoul), 2016, 24(4):387-394.
[12]Weber MD, Frank MG, Tracey KJ, et al. Stress induces the danger-associated molecular pattern HMGB-1 in the hippocampus of male sprague dawley rats: a priming stimulus of microglia and the NLRP3 inflammasome[J]. J Neuro, 2015, 35(1):316-324.
[13]Zheng Y, Xiong S, Jiang P, et al. Glucocorticoids inhibit lipopolysaccharide-mediated inflammatory response by downregulating microRNA-155:a novel anti-inflammation mechanism[J]. Free Radic Biol Med, 2012, 52(8): 1307-1317.
[14]Minneci PC, Deans KJ, Banks SM, et al. Meta-analysis: the effect of steroids on survival and shock during sepsis depends on the dose[J]. Ann Intern Med, 2004, 141(1): 47-56.