[1]Gil HW, Hong JR, Jang SH, et al. Diagnostic and therapeutic approach for acute paraquat intoxication[J]. J Korean Med Sci, 2014, 29(11):1441-1449.
[2]Wei T, Tian W, Liu F, et al. Protective effects of exogenous beta-hydroxybutyrate on paraquat toxicity in rat kidney[J]. Biochem Biophys Res Commun, 2014, 447(4):666-671.
[3]Hardie DG. AMP-activated protein kinase: an energy sensor that regulates all aspects of cell function[J]. Genes Dev, 2011, 25(18):1895-1908.
[4]Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism[J]. Nat Cell Biol, 2011, 13(9):1016-1023.
[5]Dos Santos CC, Gopal B, Verma S. Metformin: An old dog with a new trick[J]. Cell Metab, 2018, 28(3):334-336.
[6]Rangarajan S, Bone NB, Zmijewska AA, et al. Metformin reverses established lung fibrosis in a bleomycin model[J]. Nat Med, 2018, 24(8):1121-1127.
[7]Lin JL, Lin-Tan DT, Chen KH, et al. Repeated pulse of methylprednisolone and cyclophosphamide with continuous dexamethasone therapy for patients with severe paraquat poisoning[J]. Crit Care Med, 2006, 34(2):368-373.
[8]Dinis-Oliveira RJ, Pontes H, Bastos ML, et al. An effective antidote for paraquat poisonings: the treatment with lysine acetylsalicylate[J]. Toxicology, 2009, 255(3):187-193.
[9]Sun B, Chen YG. Advances in the mechanism of paraquat-induced pulmonary injury[J]. Eur Rev Med Pharmacol Sci, 2016, 20(8):1597-1602. 〖ZK)〗
[10]Liu S, Liu K, Sun Q, et al. Consumption of hydrogen water reduces paraquat-induced acute lung injury in rats[J]. J Biomed Biotechnol, 2011, 2011:305 086.
[11]Ishida Y, Takayasu T, Kimura A, et al. Gene expression of cytokines and growth factors in the lungs after paraquat administration in mice[J]. Leg Med (Tokyo), 2006, 8(2):102-109.
[12]Donnelly TJ, Meade P, Jagels M, et al. Cytokine, complement, and endotoxin profiles associated with the development of the adult respiratory distress syndrome after severe injury[J]. Crit Care Med, 1994, 22(5):768-776.
[13]El-Tahan RR, Ghoneim AM, El-Mashad N. TNF-α gene polymorphisms and expression[J]. Springerplus, 2016, 5(1):1508.
[14]Chen CJ, Shi Y, Hearn A, et al. MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals[J]. J Clin Invest, 2006, 116(8):2262-2271.
[15]Ren K, Torres R. Role of interleukin-1beta during pain and inflammation[J]. Brain Res Rev, 2009, 60(1):57-64.
[16]Gabay C. Interleukin-6 and chronic inflammation[J]. Arthritis Res Ther, 2006, 8 (Suppl 2):S3.
[17]Lopez-Rodriguez E, Boden C, Echaide M, et al. Surfactant dysfunction during overexpression of TGF-β1 precedes profibrotic lung remodeling in vivo[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(11):L1260-1271. [18]Chitra P, Saiprasad G, Manikandan R, et al. Berberine attenuates bleomycin induced pulmonary toxicity and fibrosis via suppressing NF-κB dependant TGF-β activation: a biphasic experimental study[J]. Toxicol Lett, 2013, 219(2):178-193.
[19]Tsai HL, Chang JW, Yang HW, et al. Amelioration of paraquat-induced pulmonary injury by mesenchymal stem cells[J]. Cell Transplant, 2013, 22(9):1667-1681.
[20]Xu L, Xu J, Wang Z. Molecular mechanisms of paraquat-induced acute lung injury: a current review[J]. Drug Chem Toxicol, 2014, 37(2):130-134.
[21]Liu MW, Su MX, Tang DY, et al. Ligustrazin increases lung cell autophagy and ameliorates paraquat-induced pulmonary fibrosis by inhibiting PI3K/Akt/mTOR and hedgehog signalling via increasing miR-193a expression[J]. BMC Pulm Med, 2019, 19(1):35.
[22]Niso-Santano M, González-Polo RA, Bravo-San Pedro JM, et al. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell death: modulation by the Nrf2/Trx axis[J]. Free Radic Biol Med, 2010, 48(10):1370-1381.
[23]Huang J, Ning N, Zhang W. Effects of paraquat on IL-6 and TNF-alpha in macrophages[J]. Exp Ther Med, 2019, 17(3):1783-1789.
[24]Hu X, Shen H, Wang Y, et al. Aspirin-triggered resolvin D1 alleviates paraquat-induced acute lung injury in mice[J]. Life Sci, 2019, 218:38-46.
[25]Hong GL, Cai QQ, Tan JP, et al. Mifepristone-inducible recombinant adenovirus attenuates paraquat-induced lung injury in rats[J]. Hum Exp Toxicol, 2015, 34(1):32-43.
[26]de Oliveira MR, de Bittencourt Brasil F, Fürstenau CR. Inhibition of the Nrf2/HO-1 axis suppresses the mitochondria-relatedprotection promoted by gastrodin in human neuroblastoma cells exposed to paraquat[J]. Mol Neurobiol, 2019, 56(3):2174-2184.
[27]Daskalopoulos EP, Dufeys C, Bertrand L, et al. AMPK in cardiac fibrosis and repair: Actions beyond metabolic regulation[J]. J Mol Cell Cardiol, 2016, 91:188-200.
[28]Carling D, Mayer FV, Sanders MJ, et al. AMP-activated protein kinase: nature′s energy sensor[J]. Nat Chem Biol, 2011, 7(8):512-518.
[29]Milan D, Jeon JT, Looft C, et al. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle[J]. Science, 2000, 288(5469):1248-1251.
[30]Hawley SA, Davison M, Woods A, et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase[J]. J Biol Chem, 1996, 271(44):27 879-27 887.
[31]Stein SC, Woods A, Jones NA, et al. The regulation of AMP-activated protein kinase by phosphorylation[J]. Biochem J, 2000, 345 (Pt 3):437-443.
[32]Wong KA, Lodish HF. A revised model for AMP-activated protein kinase structure: The alpha-subunit binds to both the beta- and gamma-subunits although there is no direct binding between the beta- and gamma-subunits[J]. J Biol Chem, 2006, 281(47):36 434-36 442.
[33]Polekhina G, Gupta A, Michell BJ, et al. AMPK beta subunit targets metabolic stress sensing to glycogen[J]. Curr Biol, 2003, 13(10):867-871.
[34]Ewart MA, Kennedy S. AMPK and vasculoprotection[J]. Pharmacol Ther, 2011, 131(2):242-253.
[35]Carling D. AMPK signalling in health and disease[J]. Curr Opin Cell Biol, 2017, 45:31-37.
[36]Hardie DG. AMPK--sensing energy while talking to other signaling pathways[J]. Cell Metab, 2014, 20(6):939-952.
[37]Hawley SA, Fullerton MD, Ross FA, et al. The ancient drug salicylate directly activates AMP-activated protein kinase[J]. Science, 2012, 336(6083):918-922.
[38]Gadalla AE, Pearson T, Currie AJ, et al. AICA riboside both activates AMP-activated protein kinase and competes with adenosine for the nucleoside transporter in the CA1 region of the rat hippocampus[J]. J Neurochem, 2004, 88(5):1272-1282.
[39]Cool B, Zinker B, Chiou W, et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome[J]. Cell Metab, 2006, 3(6):403-416.
[40]许延龙,武坷鑫,王前,等. AMPK-mTOK信号通路参与百草枯致PC12细胞的自噬抑制作用[J]. 中华劳动卫生职业病杂志, 2018, 36(11):801-807.
[41]Tohyama D, Yamaguchi A. A critical role of SNF1A/dAMPKalpha (Drosophila AMP-activated protein kinase alpha) in muscle on longevity and stress resistance in Drosophila melanogaster[J]. Biochem Biophys Res Commun, 2010, 394(1):112-118.
[42]Liu SJ, Yin CX, Ding MC, et al. Berberine inhibits tumor necrosis factor-α-induced expression of inflammatory molecules and activation of nuclear factor-κB via the activation of AMPK in vascular endothelial cells[J]. Mol Med Rep, 2015, 12(4):5580-5586.
[43]Li W, Qiu X, Jiang H, et al. Ulinastatin inhibits the inflammation of LPS-induced acute lung injury in mice via regulation of AMPK/NF-κB pathway[J]. Int Immunopharmacol, 2015, 29(2):560-567.
[44]Park CS, Bang BR, Kwon HS, et al. Metformin reduces airway inflammation and remodeling via activation of AMP-activated protein kinase[J]. Biochem Pharmacol, 2012, 84(12):1660-1670.
[45]Maniar K, Singh V, Moideen A, et al. Inhalational supplementation of metformin butyrate: A strategy for prevention and cure of various pulmonary disorders[J]. Biomed Pharmacother, 2018, 107:495-506.
[46]Gamad N, Malik S, Suchal K, et al. Metformin alleviates bleomycin-induced pulmonary fibrosis in rats: Pharmacological effects and molecular mechanisms[J]. Biomed Pharmacother, 2018, 97:1544-1553.
[47]Chen X, Walther FJ, Sengers RM, et al. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(3):L262-270.
[48]Jiang C, Zhong R, Zhang J, et al. Reduning injection ameliorates paraquat-induced acute lung injury by regulating AMPK/MAPK/NF-kappaB signaling[J]. J Cell Biochem, 2019, 120(8):12 713-12 723.
[49]Hu M, Liu B. Resveratrol via activation of LKB1-AMPK signaling suppresses oxidative stress to prevent endothelial dysfunction in diabetic mice[J]. Clin Exp Hypertens, 2016, 38(4):381-387.
[50]Gallo A, Ceolotto G, Pinton P, et al. Metformin prevents glucose-induced protein kinase C-beta2 activation in human umbilical vein endothelial cells through an antioxidant mechanism[J]. Diabetes, 2005, 54(4):1123-1131.
[51]Wang S, Dale GL, Song P, et al. AMPKalpha1 deletion shortens erythrocyte life span in mice: role of oxidative stress[J]. J Biol Chem, 2010, 285(26):19 976-19 985.
[52]Wang S, Zhang M, Liang B, et al. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes[J]. Circ Res, 2010, 106(6):1117-1128.
[53]Hwang AB, Ryu EA, Artan M, et al. Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in caenorhabditis elegans[J]. Proc Natl Acad Sci U S A, 2014, 111(42):E4458-4467.
[54]Meng J, Lv Z, Qiao X, et al. The decay of redox-stress response capacity is a substantive characteristic of aging: Revising the redox theory of aging[J]. Redox Biol, 2017, 11:365-374.
[55]Gamad N, Malik S, Suchal K, et al. Metformin alleviates bleomycin-induced pulmonary fibrosis in rats: Pharmacological effects and molecular mechanisms[J]. Biomed Pharmacother, 2018, 97:1544-1553.
[56]Zhang CX, Pan SN, Meng RS, et al. Metformin attenuates ventricular hypertrophy by activating the AMP-activated protein kinase-endothelial nitric oxide synthase pathway in rats[J]. Clin Exp Pharmacol Physiol, 2011, 38(1):55-62.
[57]Hu L, Su L, Dong Z, et al. AMPK agonist AICAR ameliorates portal hypertension and liver cirrhosis via no pathway in the BDL rat model[J]. J Mol Med (Berl), 2019, 97(3):423-434.
[58]Yao L, Li J, Li L, et al. Coreopsis tinctoria nutt ameliorates high glucose-induced renal fibrosis and inflammation via the TGF-β1/SMADS/AMPK/NF-κB pathways[J]. BMC Complement Altern Med, 2019, 19(1):14.
[59]Takata T, Motoo Y, Tomosugi N. Effect of saikokeishito, a kampo medicine, on hydrogen peroxide-induced premature senescence of normal human dermal fibroblasts[J]. J Integr Med, 2014, 12(6):495-503.
[60]Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism[J]. Nat Cell Biol, 2011, 13(9):1016-1023.
[61]Blanco-Ayala T, Andérica-Romero AC, Pedraza-Chaverri J. New insights into antioxidant strategies against paraquat toxicity[J]. Free Radic Res, 2014, 48(6):623-640.
[62]Wen C, Lin F, Huang B, et al. Metabolomics analysis in acute paraquat poisoning patients based on UPLC-Q-TOF-MS and machine learning approach[J]. Chem Res Toxicol, 2019, 32(4):629-637.
[63]Anandhan A, Lei S, Levytskyy R, et al. Glucose metabolism and AMPK signaling regulate dopaminergic cell death induced by gene (alpha-synuclein)-environment (paraquat) interactions[J]. Mol Neurobiol, 2017, 54(5):3825-3842.
[64]Fazakerley DJ, Minard AY, Krycer JR, et al. Mitochondrial oxidative stress causes insulin resistance without disrupting oxidative phosphorylation[J]. J Biol Chem, 2018, 293(19):7315-7328.
[65]Anandhan A, Lei S, Levytskyy R, et al. Glucose metabolism and AMPK signaling regulate dopaminergic cell death induced by gene (alpha-synuclein)-environment (paraquat) interactions[J]. Mol Neurobiol, 2017, 54(5):3825-3842.
[66]He Y, Zou L, Zhou Y, et al. Adiponectin ameliorates the apoptotic effects of paraquat on alveolar type cells via improvements in mitochondrial function[J]. Mol Med Rep, 2016, 14(1):746-752.
[67]Powers R, Lei S, Anandhan A, et al. Metabolic investigations of the molecular mechanisms associated with parkinson′s disease[J]. Metabolites, 2017, 7(2): E22.