黄春才,柴艳芬. 新型心肌损伤标志物的急诊应用研究进展[J]. 中国急救医学, 2018, 38(5): 455-.
Huang Chun-cai,Chai Yan-fen. Research progress in old and new cardiac biomarkers in patients with acute chest pain. Chinese Journal of Critical Care Medicine, 2018, 38(5): 455-.
[1]Ladue JS, Wroblewski F, Karmen A. Serum glutamic oxaloacetic transaminase activity in human acute transmural myocardial infarction[J]. Science, 1954, 120(3117):497-499.
[2]World Health Organization. Hypertension and coronary heart disease: Classification and Criteria for Epidemiological Studies, First Report of the Expert Committee on Cardiovascular Diseases and Hypertension[R]. Geneva: WHO, 1959.
[3]Panteghini M. Enzyme and muscle diseases[J]. Curr Opin Rheumatol, 1995, 7(6):469-474.
[4]Starr JW, Wagner GS, Draffin RM, et al. Vectorcardiographic criteria for the diagnosis of anterior myocardial infarction[J]. Circulation, 1976, 53(2):229-234.
[5]Gibler WB, Gibler CD, Weinshenker E, et al. Myoglobin as an early indicator of acute myocardial infarction[J]. Ann Emerg Med, 1987, 16(8):851-856.
[6]Rapaport E. Nomenclature and criteria for diagnosis of ischemic heart disease. Report of the Joint International Society and Federation of Cardiology/World Health Organization task force on standardization of clinical nomenclature[J]. Circulation, 1979, 59(3):607-609.
[7]Hamm CW, Katus HA. New biochemical markers for myocardial cell injury[J]. Curr Opin Cardiol, 1995, 10(4):355-360.
[8]Carlton EW, Cullen L, Than M, et al. A novel diagnostic protocol to identify patients suitable for discharge after a single high-sensitivity troponin[J]. Heart, 2015, 101(13):1041-1046.
[9]Weber M, Bazzino O, Navarro Estrada JL, et al. Improved diagnostic and prognostic performance of a new high-sensitive troponin T assay in patients with acute coronary syndrome[J]. Am Heart J, 2011, 162(1):81-88.〖ZK)〗
[10]Rodriguez F, Mahaffey KW. Management of Patients With NSTE-〖JP〗ACS: A Comparison of the Recent AHA/ACC and ESC Guidelines[J]. J Am Coll Cardiol, 2016, 68(3):313-321.
[11]Scirica BM, Morrow DA, Cannon CP, et al. Clinical application of C-reactive protein across the spectrum of acute coronary syndromes[J]. Clin Chem, 2007, 53(10):1800-1807.
[12]Heeschen C, Hamm CW, Bruemmer J, et al. Predictive value of C-reactive protein and troponin T in patients with unstable angina: a comparative analysis. CAPTURE Investigators. Chimeric c7E3 AntiPlatelet Therapy in Unstable angina REfractory to standard treatment trial[J]. J Am Coll Cardiol, 2000, 35(6):1535-1542.
[13]Prabhu M. HS CRP IN ACUTE CORONARY SYNDROME[C]// Aace Meeting. 2016.
[14]Russell CJ, Exley AR, Ritchie AJ. Widespread coronary inflammation in unstable angina[J]. N Engl J Med, 2003, 348(19):1931.
[15]Govindarajan S, Raghavan VM, Rao AC. Plasma Myeloperoxidase and Total Sialic Acid as Prognostic Indicators in Acute Coronary Syndrome[J]. J Clin Diagn Res, 2016, 10(8):BC9-13.
[16]Dollery CM, Mcewan JR, Henney AM. Matrix metalloproteinases and cardiovascular disease[J]. Circ Res, 1995, 77(5):863-868.
[17]Fingleton B. Matrix metalloproteinases as valid clinical targets[J]. Curr Pharm Des, 2007, 13(3):333-346.
[18]Fernandez MN, Gagliardi J, Fabre B, et al. Matrix metalloproteinases and psychosocial factors in acute coronary syndrome patients[J]. Psychoneuroendocrinology, 2016, 63:102-108.
[19]Varo N, de Lemos JA, Libby P, et al. Soluble CD40L: risk prediction after acute coronary syndromes[J]. Circulation, 2004, 108(9):1049-1052.
[20]Bayes-Genis A, Conover CA, Overgaard MT, et al. Pregnancy-associated plasma protein A as a marker of acute coronary syndromes[J]. N Engl J Med, 2001, 345(14):1022-1029.
[21]Heeschen C, Dimmeler S, Fichtlscherer S, et al. Prognostic value of placental growth factor in patients with acute chest pain[J]. JAMA, 2004, 291(4):435-441.
[22]Cassidy A, Chiuve SE, Manson JE, et al. Potential role for plasma placental growth factor in predicting coronary heart disease risk in women[J]. Arterioscler Thromb Vasc Biol, 2009, 29(1):134-139.
[23]Su D, Li Z, Li X, et al. Association between serum interleukin-6 concentration and mortality in patients with coronary artery disease[J]. Mediators Inflamm, 2013, 2013:726 178.
[24]Sinha MK, Gaze DC, Tippins JR, et al. Ischemia modified albumin is a sensitive marker of myocardial ischemia after percutaneous coronary intervention[J]. Circulation, 2003, 107(19):2403-2405.
[25]Peacock F, Morris DL, Anwaruddin S, et al. Meta-analysis of ischemia-modified albumin to rule out acute coronary syndromes in the emergency department[J]. Am Heart J, 2006, 152(2):253-262.
[26]Wu AH. The ischemia-modified albumin biomarker for myocardial ischemia[J]. MlO MedLab Obs, 2003, 35(6):36-38,40.
[27]Rathore V, Singh N, Rastogi P, et al. Correlation of Inflammatory Marker with Glycogen Phosphorylase BB (GPBB)in Patients of Acute Myocardial Infarction[J]. Int J Contem Med Res, 2017, 4(5):1122-1124.
[28]Lillpopp L, Tzikas S, Ojeda F, et al. Prognostic information of glycogen phosphorylase isoenzyme BB in patients with suspected acute coronary syndrome[J]. Am J Cardiol, 2012, 110(9):1225-1230.
[29]Oliver MF. Free fatty acids and acute coronary syndromes—the history[J]. QJM, 2011, 104(7):625-627.
[30]Zschiesche W, Kleine AH, Spitzer E, et al. Histochemical localization of heart-type fatty-acid binding protein in human and murine tissues[J]. Histochem Cell Biol, 1995, 103(2):147-156.
[31]Pyati AK, Devaranavadagi BB, Sajjannar SL, et al. Heart-Type Fatty Acid Binding Protein: A Better Cardiac Biomarker than CK-MB and Myoglobin in the Early Diagnosis of Acute Myocardial Infarction[J]. J Clin Diagn Res, 2015, 9(10):BC8-11.
[32]Kilcullen N, Viswanathan K, Das R, et al. Heart-type fatty acid-binding protein predicts long-term mortality after acute coronary syndrome and identifies high-risk patients across the range of troponin values[J]. J Am Coll Cardiol, 2007, 50(21):2061-2067.
[33]Packard CJ, O′Reilly DS, Caslake MJ, et al. Lipoprotein-associated phospholipase A2 as an independent predictor of coronary heart disease. West of Scotland Coronary Prevention Study Group[J]. N Engl J Med, 2000, 343(16):1148-1155.
[34]Chambless LE, Folsom AR, Davis V, et al. Risk Factors for Progression of Common Carotid Atherosclerosis: The Atherosclerosis Risk in Communities Study, 1987-1998[J]. Am J Epidemiol, 2002, 155(1):38-47.
[35]Chung H, Kwon HM, Kim JY, et al. Lipoprotein-Associated Phospholipase A2 Is Related to Plaque Stability and Is a Potential Biomarker for Acute Coronary Syndrome[J]. Yonsei Med J, 2014, 55(6):1507-1515.
[36]Danne O, Mckel M, Lueders C, et al. Prognostic implications of elevated whole blood choline levels in acute coronary syndromes[J]. Am J Cardiol, 2003, 91(9):1060-1067.
[37]de Lemos JA, Mcguire DK, Drazner MH. B-type natriuretic peptide in cardiovascular disease[J]. Lancet, 2003, 362(9380):316-322.
[38]Wang TJ, Larson MG, Levy D, et al. Plasma natriuretic peptide levels and the risk of cardiovascular events and death[J]. N Engl J Med, 2004, 350(7):655-663.
[39]Keller T, Tzikas S, Zeller T, et al. Copeptin Improves Early Diagnosis of Acute Myocardial Infarction[J]. J Am Coll Cardiol, 2010, 55(19):2096-2106.
[40]Mckel M, Searle J, Hamm C, et al. Early discharge using single cardiac troponin and copeptin testing in patients with suspected acute coronary syndrome (ACS): a randomized, controlled clinical process study[J]. Eur Heart J, 2015, 36(6):369-376.
[41]Ago T, Sadoshima J. GDF15, a cardioprotective TGF-β superfamily protein[J]. Circ Res, 2006, 98(3):294-297.
[42]Kai CW, Kempf T. Growth differentiation factor 15 in heart failure: an update[J]. Curr Heart Fail Rep, 2012, 9(4):337-345.
[43]Kai CW, Kempf T, Bo L, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non-ST-elevation acute coronary syndrome[J]. Circulation, 2007, 116(14):1540-1548.
[44]Kosova EC, de Lemos JA, Jarolim P, et al. Abstract 16378: Growth Differentiation Factor-15 Independently Predicts 2 Year Mortality in Patients With Acute Coronary Syndrome: Observations From the A to Z Trial[J]. Circulation, 2014, 2014:130.
[45]Yancy CW, Jessup M, Bozkurt B, et al. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure[J]. J Am Coll Cardiol, 2017, 68(13):1476.
[46]董浩, 安永强, 刘巍. 可溶性ST2在心力衰竭中的研究进展[J]. 中国循证心血管医学杂志, 2017, 9(8):1010-1012.
[47]Shimpo M, Morrow DA, Weinberg EO, et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction[J]. Circulation, 2004, 109(18):2186-2190.
[48]Eggers KM, Armstrong PW, Califf RM, et al. ST2 and mortality in non-ST-segment elevation acute coronary syndrome[J]. Am Heart J, 2010, 159(5):788-794.
[49]Tolppanen H, Rivas-Lasarte M, Lassus J, et al. Combined Measurement of Soluble ST2 and Amino-Terminal Pro-B-Type Natriuretic Peptide Provides Early Assessment of Severity in Cardiogenic Shock Complicating Acute Coronary Syndrome[J]. Crit Care Med, 2017, 45(7):e666-e673.
[50]Lisowska A, Knapp M, Tycińska A, et al. Predictive value of Galectin-3 for the occurrence of coronary artery disease and prognosis after myocardial infarction and its association with carotid IMT values in these patients: A mid-term prospective cohort study[J]. Atherosclerosis, 2016, 246:309-317.
[51]George M, Shanmugam E, Srivatsan V, et al. Value of pentraxin-3 and galectin-3 in acute coronary syndrome: a short-term prospective cohort study[J]. Ther Adv Cardiovasc Dis, 2015, 9(5):275-284.
[52]Singsaas EG, Manhenke CA, Dickstein K, et al. Circulating Galectin-3 Levels Are Increased in Patients with Ischemic Heart Disease, but Are Not Influenced by Acute Myocardial Infarction[J]. Cardiology, 2016, 134(4):398.
[53]Zhang WQ, Xie BQ. A meta-analysis of the relations between blood microRNA-208b detection and acute myocardial infarction[J]. Eur Rev Med Pharmacol Sci, 2017, 21(4):848-854.
[54]Adachi T, Nakanishi M, Otsuka Y, et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction[J]. Clin Chem, 2010, 56(7):1183-1185.
[55]Gidlf O, Smith JG, Miyazu K, et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction[J]. BMC Cardiovasc Disord,2013, 13:12.