[1]Kingma I, Smiseth OA, Frais MA, et al. Left ventricular external constraint: relationship between pericardial, pleural and esophageal pressures during positive end-expiratory pressure and volume loading in dogs[J]. Ann Biomed Eng, 1987, 15(3-4): 331-346. [2]Cassidy SS, Mitchell JH, Johnson RL Jr. Dimensional analysis of right and left ventricles during positive-pressure ventilation in dogs[J]. Am J Physiol, 1982, 242(4): H549-H556. [3]Richter T, Ragaller M. Ventilation in chest trauma[J]. J Emerg Trauma Shock, 2011, 4(2): 251-259. [4]Lansdorp B, Hofhuizen C, van Lavieren M, et al. Mechanical ventilation-induced intrathoracic pressure distribution and heart-lung interactions[J]. Crit Care Med, 2014, 42(9):1983-1990. [5]Mitchell JR, Sas R, Zuege DJ, et al. Ventricular interaction during mechanical ventilation in closed-chest anesthetized dogs[J]. Can J Cardiol, 2005, 21(1): 73-81. [6]Mitchell JR, Whitelaw WA, Sas R, et al. RV filling modulates LV function by direct ventricular interaction during mechanical ventilation[J]. Am J Physiol Heart Circ Physiol, 2005, 289(2): H549-H557. [7]Apostolakis S, Konstantinides S. The right ventricle in health and disease: insights into physiology, pathophysiology and diagnostic management[J]. Cardiology, 2012, 121(4): 263-273. [8]Moudgil R, Michelakis ED, Archer SL. Hypoxic pulmonary vasoconstriction[J]. J Appl Physiol, 2005, 98(1): 390-403. [9]Strang SG, Van Lieshout EM, Van Waes OJ, et al. Prevalence and mortality of abdominal compartment syndrome in severely injured patients: a systematic review[J]. J Trauma Acute Care Surg, 2016, 81(3): 585-592. [10]Voga G. Early and simple detection of diastolic dysfunction during weaning from mechanical ventilation[J]. Crit Care, 2012, 16(4):137. [11]Fewell JE, Abendschein DR, Carlson CJ, et al. Continuous positive-pressure ventilation decreases right and left ventricular end-diastolic volumes in the dog[J]. Circ Res, 1980, 46(1):125-132. [12]Mitchell JR, Doig CJ, Whitelaw WA, et al. Volume loading reduces pulmonary vascular resistance in ventilated animals with acute lung injury: evaluation of RV afterload[J]. Am J Physiol Regul Integr Comp Physiol, 2011, 300(3): R763-R770. [13]Sietsema K. Cardiovascular limitations in chronic pulmonary disease[J]. Med Sci Sports Exerc, 2001, 33(7 Suppl): S656-S661. [14]Luecke T, Pelosi P. Clinical Review: Positive end-expiratory pressure and cardiac output[J]. Crit Care, 2005, 9(6): 607-621. [15]Pinsky MR. Instantaneous venous return curves in an intact 〖JP3〗canine preparation[J].J Appl Physiol Respir Environ Exerc Physiol, 1984, 56(3): 765-771. [16]Teboul JL. Weaning-induced cardiac dysfunction: where are we today[J]. Intensive Care Med, 2014, 40(8):1069-1079. [17]Liu J, Shen F, Teboul JL, et al. Cardiac dysfunction induced by weaning from mechanical ventilation: incidence, risk factors, and effects of fluid removal[J]. Crit Care, 2016, 20(1):369. [18]Sanfilippo F, Santonocito C, Burgio G, et al. The importance of diastolic dysfunction in the development of weaning-induced pulmonary oedema[J]. Crit Care, 2017, 21(1):29. [19]Caille V, Amiel JB, Charron C, et al. Echocardiography: a help in the weaning process[J].Crit Care, 2010, 14(3):R120. [20]Papanikolaou J, Makris D, Saranteas T, et al. New insights into weaning from mechanical ventilation: left ventricular diastolic dysfunction is a key player[J]. Intensive Care Med, 2011, 37(12):1976-1985. [21]Moschietto S, Doyen D, Grech L, et al. Transthoracic echocardiography with Doppler tissue imaging predicts weaning failure from mechanical ventilation: evolution of the left ventricle relaxation rate during a spontaneous breathing trial is the key factor in weaning outcome[J]. Crit Care, 2012, 16(3):R81.