Research progress on the injury mechanisms of post-resuscitation myocardial dysfunction
Chen Li-min, Yang Min
The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
陈立旻,杨旻. 复苏后心功能障碍损伤机制的研究进展[J]. 中国急救医学, 2018, 38(12): 1109-1112.
Chen Li-min, Yang Min. Research progress on the injury mechanisms of post-resuscitation myocardial dysfunction. Chinese Journal of Critical Care Medicine, 2018, 38(12): 1109-1112.
[1]Kleinman ME, Perkins GD, Bhanji F, et al. ILCOR scientific knowledge gaps and clinical research priorities for cardiopulmonary resuscitation and emergency cardiovascular care: a consensus statement[J]. Circulation, 2018, 137(22): e802-e819.
[2]Bagheri F, Khori V, Alizadeh AM, et al. Reactive oxygen species-mediated cardiac-reperfusion injury: mechanisms and therapies[J]. Life Sci, 2016, 165: 43-55.
[3]Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection[J]. Free Radic Biol Med, 2018, 117: 76-89.
[4]Cabrera-Fuentes HA, Aragones J, Bernhagen J, et al. From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: meeting report from the third international symposium on “New frontiers in cardiovascular research”[J]. Basic Res Cardiol, 2016, 111(6): 69.
[5]汪永生,王连生. 治疗性低温处理心肌缺血/再灌注损伤的研究进展[J]. 中国急救医学, 2017, 37(9): 855-859.
[6]Heusch G, Kleinbongard P. Ivabradine: cardioprotection by and beyond heart rate reduction[J]. Drugs, 2016, 76(7): 733-740.
[7]Zaha VG, Qi D, Su KN, et al. AMPK is critical for mitochondrial function during reperfusion after myocardial ischemia [J]. J Mol Cell Cardiol, 2016, 91: 104-113.
[8]Daskalopoulos EP, Dufeys C, Bertrand L, et al. AMPK in cardiac fibrosis and repair: Actions beyond metabolic regulation [J]. J Mol Cell Cardiol, 2016, 91: 188-200.
[9]Chang W, Zhang M, Li J, et al. Berberine attenuates ischemia-reperfusion injury via regulation of adenosine-5′-monophosphate kinase activity in both non-ischemic and ischemic areas of the rat heart[J]. Cardiovasc Drugs Ther, 2012, 26(6): 467-478.
[10]Timmermans AD, Balteau M, Gélinas R, et al. A-769662 potentiates the effect of other AMP-activated protein kinase activators on cardiac glucose uptake [J]. Am J Physiol Heart Circ Physiol, 2014, 306 (12): H1619-1630.
[11]Morrison A, Chen L, Wang J, et al. Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart[J]. FASEB J, 2015, 29 (2): 408-417.
[12]Ma Y, Wang J, Gao J, et al. Antithrombin up-regulates AMP-activated protein kinase signaling during myocardial ischaemia/reperfusion injury[J]. Thromb Haemost, 2015, 113 (2): 338-349.
[13]Kambara T, Shibata R, Ohashi K, et al. C1q/tumor necrosis factor-related protein 9 protects against acute myocardial injury through an adiponectin receptor IAMPK-dependent mechanism[J]. Mol Cell Biol, 2015, 35 (12): 2173-2185.
[14]Vaca Jacome AS, Rabilloud T, Schaeffer-Reiss C, et al. N-terminome analysis of the human mitochondrial proteome[J]. Proteomics, 2015, 15 (14): 2519-2524.
[15]Mnatsakanyan N, Beutner G, Porter GA, et al. Physiological roles of the mitochondrial permeability transition pore[J]. J Bioenerg Biomember, 2017, 49 (1): 13-25.
[16]Biasutto L, Azzolini M, Szabò I et al. The mitochondrial permeability transition pore in AD 2016: An update[J]. Biochim Biophys Acta, 2016, 1863 (10): 2515-2530.
[17]Ghaderi S, Alidadiani N, Dilaver N, et al. Role of glycogen synthase kinase following myocardial infarction and ischemia-reperfusion[J]. Apoptosis, 2017, 22 (7): 887-897.
[18]Ferrari R, Rizzo P. The Notch pathway: a novel target for myocardial remodelling therapy[J]. Eur Heart, 2014, 35 (32): 2140-2145.
[19]Li Y, Hiroi Y, Ngoy S, et al. Notch1 in bone marrow-derived cells mediates cardiac repair after myocardial infarction[J]. Circulation, 2011, 123(8): 866-876.
[20]周学亮,方义湖,赵勇. Notch1减轻心肌缺血再灌注损伤作用的研究[J]. 中华医学杂志, 2016, 96 (20): 1591-1596.
[21]Nistri S, Sassoli C, Bani D. Notch Signaling in Ischemic Damage and Fibrosis: Evidence and Clues from the Heart[J]. Front Pharmacol, 2017, 8: 187.
[22]Boopathy AV, Martinez MD, Smith AW, et al. Intramyocardial delivery of notch ligand-containing hydrogels improves cardiac function and angiogenesis following infarction[J]. Tissue Eng Part A, 2015, 21(17-18): 2315-2322.
[23]Felician G, Collesi C, Lusic M, et al. Epigenetic modification at Notch responsive promoters blunts efficacy of inducing notch pathway reactivation after myocardial infarction[J]. Circ Res, 2014, 115(7): 636-649.
[24]Zhang M, Pan X, Zou Q, et al. Notch3 Ameliorates Cardiac Fibrosis After Myocardial Infarction by Inhibiting the TGF-β1/Smad3 Pathway[J].Cardiovasc Toxicol, 2016, 16(4): 316-324.
[25]Meng X, Yang J, Dong M, et al. Regulatory T cells in cardiovascular diseases[J]. Nat Rev Cardiol, 2016, 13(3): 167-179.
[26]Wang YP, Xie Y, Ma H, et al. Regulatory T lymphocytes in myocardial infarction: A promising new therapeutic target[J]. Int J Cardiol, 2016, 203: 923-928.
[27]Ong SB, Hernández-Reséndiz S, Crespo-Avilan GE, et al. Inflammation following acute myocardial infarction: Multiple players, dynamicroles, and novel therapeutic opportunities[J]. Pharmacol Ther, 2018, 186: 73-87.
[28]Cohen I, Rider P, Vornov E, et al. IL-1α is a DNA damage sensor linking genotoxic stress signaling to sterile inflammation and innate immunity [J]. Sci Rep, 2015, 5: 14756.
[29]Mauro AG, Mezzaroma E, Torrado J, et al. Reduction of Myocardial ischemia-reperfusion injury by inhibiting interleukin-1 alpha [J]. J Cardiovasc Pharmacol, 2017, 69(3): 156-160.
[30]Toldo S, Mezzaroma E, Mauro AG, et al. The inflammasome in myocardial injury and cardiac remodeling [J]. Antioxid Redox Signal, 2015, 22(13): 1146-1161.
[31]Sugiyama K, Muroi M, Kinoshita M, et al. NF-κB activation via MyD88-dependent Toll-like receptor signaling is inhibited by trichothecene mycotoxin deoxynivalenol [J]. J Toxicol Sci, 2016, 41(2):273-279.
[32]Liu X, Yu Z, Huang X, et al. Peroxisome proliferator-activated receptor γ (PPARγ) mediates the protective effect of quercetin against myocardial ischemia-reperfusion injury via suppressing the NF-κB pathway [J]. Am J Transl Res, 2016, 8(12): 5169-5186.
[33]Lu M, Tang F, Zhang J, et al. Astragaloside IV attenuates injury caused by myocardial ischemia/reperfusion in rats via regulation of Toll-like receptor 4/nuclear factor-kappaB signaling pathway [J]. Phytother Res, 2015, 29(4): 599-606.
[34]Han D, Wei J, Zhang R, et al. Hydroxysafflor yellow A alleviates myocardial ischemia/reperfusion in hyperlipidemic animals through the suppression of TLR4 signaling [J]. Sci Rep, 2016, 6: 35319.