晏晨,杜贤进,魏捷. 中心静脉压再思考[J]. 中国急救医学, 2018, 38(12): 1035-1038.
Yan Chen, Du Xian-jin, Wei Jie. The reconsideration of central venous pressure. Chinese Journal of Critical Care Medicine, 2018, 38(12): 1035-1038.
[1]Cecconi M, Hofer C, Teboul JL, et al. Fluid challenges in intensive care: the FENICE study : A global inception cohort study[J]. Intensive Care Med, 2015, 41(9):1529-1537.
[2]Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016[J]. Crit Care Med, 2017, 45(3):486-552.
[3]Cecconi M, De Backer D, Antonelli M, et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine[J]. Intensive Care Med, 2014, 40(12):1795-1815.
[4]周晨亮. 中心静脉压监测的临床意义再评价[J]. 中国急救医学, 2017, 37(4):310-311.
[5]王庭槐,闫建群,郑煜,等. 生理学[M]. 第3版. 人民卫生出版社, 2015:145.
[6]赵玉沛,陈孝平,杨连粤,等. 外科学[M]. 第3版. 人民卫生出版社, 2015:41-50.
[7]Magder S. Understanding central venous pressure: not a preload index[J]. Curr Opin Crit Care, 2015, 21(5):369-375.
[8]祝贵州,李玉红,何锐,等. 中心静脉压联合每搏心输出量对全麻患者容量反应性的预测价值[J]. 浙江医学, 2018, 40(1):37-42.
[9]Berlin DA, Bakker J. Starling curves and central venous pressure[J]. Crit Care, 2015, 19(1):55.
[10]Pinsky MR, Kellum JA, Bellomo R. Central venous pressure is a stopping rule, not a target of fluid resuscitation[J]. Crit Care Resusc, 2014, 16(4):245-246.
[11]Eskesen TG, Wetterslev M, Perner A. Systematic review including re-analyses of 1148 individual data sets of central venous pressure as a predictor of fluid responsiveness[J]. Intensive Care Med, 2016, 42(3):324-332.
[12]Biais M, Ehrmann S, Mari A, et al. Clinical relevance of pulse pressure variations for predicting fluid responsiveness in mechanically ventilated intensive care unit patients: the grey zone approach[J]. Crit Care, 2014, 18(6):587.
[13]Beard DA, Feigl EO. Understanding Guyton′s venous return curves[J]. Am J Physiol Heart Circ Physiol, 2011, 301(3):H629-H633.
[14]Cecconi M, Aya HD, Geisen M, et al. Changes in the mean systemic filling pressure during a fluid challenge in postsurgical intensive care patients[J]. Intensive Care Med, 2013, 39(7):1299-1305.
[15]Vellinga NA, Ince C, Boerma EC. Elevated central venous pressure is associated with impairment of microcirculatory blood flow in sepsis: a hypothesis generating post hoc analysis[J]. BMC Anesthesiol, 2013, 13:17.[16]Leone M, Asfar P, Radermacher P, et al. Optimizing mean arterial pressure in septic shock: a critical reappraisal of the literature[J]. Crit Care, 2015, 19(1):101.
[17]Legrand M, Dupuis C, Simon C, et al. Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study[J]. Crit Care, 2013, 17(6):R278.
[18]Deep A, Sagar H, Goonasekera C, et al. Evolution of acute kidney injury and its association with systemic hemodynamics in children with fluid-refractory septic shock[J]. Crit Care Med, 2018, 46(7):e677-e683.
[19]Danziger J, Chen K, Cavender S, et al. Admission Peripheral Edema, Central Venous Pressure, and Survival in Critically Ill Patients[J]. Ann Am Thorac Soc, 2016, 13(5):705-711.
[20]Boyd JH, Forbes J, Nakada TA, et al. Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality[J]. Crit Care Med, 2011, 39(2):259-265.
[21]Cordemans C, De Laet I, Van Regenmortel N, et al. Fluid management in critically ill patients: the role of extravascular lung water, abdominal hypertension, capillary leak, and fluid balance[J]. Ann Intensive Care,2012,2(Suppl 1 Diagnosis and management of intra-abdominal hyperten):S1.
[22]Vincent JL, De Backer D. Circulatory Shock[J]. N Engl J Med, 2013, 369(18):1726-1734.