摘要 目的 探讨沉默信号调节因子1(SIRT1)/细胞核因子-κB(NF-κB)信号通路在氧糖剥夺再灌注诱导海马神经元损伤中的作用。 方法 通过SIRT1过表达慢病毒和RNAi技术调控小鼠海马神经元SIRT1的表达后建立氧糖剥夺再灌注损伤模型,实验设置七组:对照组(Control组)、氧糖剥夺再灌注损伤模型组(OGD组)、OGD+转染SIRT1-siRNA质粒组(OGD+SIRT1-siRNA组)、OGD+转染空载质粒组(OGD+NC-siRNA组)、OGD+感染过表达SIRT1慢病毒组(OGD+SIRT1上调组)、OGD+感染空载慢病毒组(OGD+Vector组)及OGD+SIRT1上调+ SIRT1-siRNA组。对照组在37 ℃常氧条件下培养,其余六组在经过相应处理后给予氧糖剥夺处理9 h及再灌注处理24 h,再灌注处理结束后采用CCK-8法测定细胞活力、化学比色法测定乳酸脱氢酶(LDH)释放量、流式细胞术检测细胞凋亡率,荧光定量PCR法检测SIRT1、NF-κB的mRNA表达量,Western blot检测SIRT1、NF-κB、IκBα、Bcl-2、Bax、Cleaved caspase-3、β-actin、TBP的表达量。 结果 与Control组比较,OGD组细胞活力(%:100 vs. 53.83±1.88)、SIRT1蛋白表达量(0.62±0.06 vs. 0.33±0.03),IκBα蛋白表达量(1.01±0.06 vs. 0.42±0.03)、Bcl-2/Bax比值(2.64±0.34 vs. 0.58±0.06)明显降低(P<0.05),LDH释放量(U/mL:1.12±0.17 vs. 2.76±0.23),细胞凋亡率(%:8.46±1.77 vs. 29.58±1.84),NF-κB蛋白表达量(0.23±0.03 vs. 0.63±0.03),Cleaved caspase-3蛋白表达量(0.19±0.03 vs. 0.82±0.04)明显升高(P<0.05);与OGD组和OGD+Vector组比较,OGD+SIRT1上调组细胞活力(%:53.83±1.88、50.33±3.83 vs. 72.77±1.80)、SIRT1表达量(0.63±0.03、0.58±0.04 vs. 1.02±0.05)、IκBα表达量(0.42±0.03、0.38±0.04 vs. 0.62±0.04)及 Bcl-2/Bax比值(0.58±0.06、0.55±0.04 vs.1.41±0.16)明显升高(P<0.05),LDH释放量(U /mL:2.76±0.23、2.91±0.25 vs.1.95±0.20)、细胞凋亡率(%:29.58±1.84、28.87±2.91 vs. 20.61±2.81)%、NF-κB表达量(0.63±0.03、0.58±0.04 vs.0.35±0.04)、Cleaved caspase-3表达量(0.82±0.04、0.71±0.05 vs. 0.46±0.04)明显降低(P<0.05);与OGD组和OGD+NC-siRNA组比较,OGD+SIRT1-siRNA组细胞活力(%:53.83±1.88、49.23±3.12 vs. 34.86±3.17)、SIRT1表达量(0.33±0.03、0.32±0.04 vs. 0.18±0.04)、IκBα表达量(0.42±0.03、0.46±0.05 vs. 0.27±0.04)及Bcl-2/Bax比值(0.580.06、0.62±0.05 vs. 0.15±0.02)明显降低(P<0.05),LDH释放量(U/mL:2.76±0.23、2.78±0.24 vs. 3.51±0.31 )、细胞凋亡率(%:29.58±1.84、28.52±2.08 vs. 37.03±3.19)、NF-κB表达量(0.63±0.03、0.64±0.04 vs. 0.93±0.05)、Cleaved caspase-3表达量(0.82±0.04、0.85±0.05 vs. 1.12±0.13)明显升高(P<0.05)。结论 SIRT1/NF-κB通路参与了氧糖剥夺再灌注诱导小鼠海马神经元损伤过程。
姚鹏,陈勇,徐国海. SIRT1/NF-κB通路在氧糖剥夺再灌注诱导小鼠海马神经元损伤中的作用[J]. 中国急救医学, 2019, 39(4): 382-387.
Yao Peng, Chen Yong, Xu Guo-hai. The role of SIRT1/NF-κB pathway in injury of mouse hippocampal neurons induced by oxygen glucose deprivation and reperfusion. Chinese Journal of Critical Care Medicine, 2019, 39(4): 382-387.
[1]Deb P, Sharma S, Hassan KM. Pathophysiologic mechanisms of acute ischemic stroke: An overview with emphasis on therapeutic significance beyond thrombolysis[J]. Pathophysiology, 2010, 17(3): 197-218.
[2]Li W, Liu J, Chen JR, et al. Neuroprotective effects of DTIO, a novel analog of Nec-1, in acute and chronic stages after ischemic stroke[J]. Neuroscience, 2018, 390: 12-29.
[3]Neves G, Cooke SF, Bliss TV. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality[J]. Nat Rev Neurosci, 2008, 9(1): 65-75.
[4]Li Z, Han X. Resveratrol alleviates early brain injury following subarachnoid hemorrhage: possible involvement of AMPK/SIRT1/autophagy signaling pathway[J]. Biol Chem, 2018, 399(11): 1339-1350.
[5]Yan W, Fang Z, Yang Q, et al. SirT1 mediates hyperbaric oxygen preconditioning-induced ischemic tolerance in rat brain[J]. J Cereb Blood Flow Metab, 2013, 33(3): 396-406.
[6]Maciel M, Benedet SR, Lunardelli EB, et al. Predicting Long-term Cognitive Dysfunction in Survivors of Critical Illness with Plasma Inflammatory Markers: a Retrospective Cohort Study[J]. Mol Neurobiol, 2018.
[7]Amaral DG, Witter MP. The three-dimensional organization of the hippocampal formation: a review of anatomical data[J]. Neuroscience, 1989, 31(3): 571-591.
[8]Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer′s disease[J]. Mol Neurodegener, 2011, 6: 85.
[9]Tian Y, Ma J, Wang W, et al. Resveratrol supplement inhibited the NF-κB inflammation pathway through activating AMPKα-SIRT1 pathway in mice with fatty liver[J]. Mol Cell Biochem, 2016, 422(1-2): 75-84.〖ZK)〗
[10]Waldman M, Cohen K, Yadin D, et al. Regulation of diabetic cardiomyopathy by caloric restriction is mediated by intracellular signaling pathways involving ‘SIRT1 and PGC-1α′[J]. Cardiovasc Diabetol, 2018, 17(1): 111.
[11]Wan D, Zhou Y, Wang K, et al. Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats[J]. Brain Res Bull, 2016, 121: 255-262.
[12]Kume S, Haneda M, Kanasaki K, et al. Silent information regulator 2 (SIRT1) attenuates oxidative stress-induced mesangial cell apoptosis via p53 deacetylation[J]. Free Radic Bio Med, 2006, 40(12): 2175-2182.
[13]Hernández-Jiménez M, Hurtado O, Cuartero MI, et al. Silent information regulator 1 protects the brain against cerebral ischemic damage[J]. Stroke, 2013, 44(8): 2333-2337.
[14]Forman K, Vara E, García C, et al. Influence of aging and growth hormone on different members of the NF-kB family and IkB expression on heart from a murine model of senescence-accelerated aging[J]. Exp Gerontol, 2016, 73: 114-120.
[15]Harari OA, Liao JK. NF-κB and innate immunity in ischemic stroke[J]. Ann N Y Acad Sci, 2010, 1207: 32-40.
[16]Li X, Massa PE, Hanidu A, et al. IKKalpha, IKKbeta, and NEMO/IKKgamma are each required for the NF-kappa B-mediated inflammatory response program[J]. J Biol Chem, 2002, 277(47): 45129-45140.
[17]Krueger A, Baumann S, Krammer PH, et al. FLICE-Inhibitory Proteins: Regulators of Death Receptor-Mediated Apoptosis[J]. Mol Cell Biol, 2001, 21(24): 8247-8254.
[18]Walensky LD. BCL-2 in the crosshairs: tipping the balance of life and death[J]. Cell Death Differ, 2006, 13(8): 1339-1350.