朱桂军,胡振杰. 急性肾损伤定义及诊断标准的昨天 今天与明天[J]. 中国急救医学, 2018, 38(2): 114-117.
Zhou Gui-jun, Hu Zhen-jie. Defination and diagnostic criteria of acute kidney injury: yesterday, today and tomorrow. Chinese Journal of Critical Care Medicine, 2018, 38(2): 114-117.
[1]Kanagasundaram NS. Pathophysiology of ischaemic acute kidney injury[J]. Ann Clin Biochem, 2014, 52(Pt 2):193-205.
[2]Molitoris BA. Transitioning to therapy in ischemic acute renal failure[J]. J Am Soc Nephrol, 2002, 14(1):265-267.
[3]Bellomo R, Kellum JA, Ronco C,et al. Acute kidney injury in sepsis[J]. Intensive Care Med, 2017, 43(6):816-828.
[4]Prowle JR, Bellomo R. Sepsis-associated acute kidney injury: macrohemodynamic and microhemodynamic alterations in the renal circulation[J]. Semin Nephrol, 2015, 35(1):64-74.
[5]Saotome T, Ishikawa K, May CN,et al. The impact of experimental hypoperfusion on subsequent kidney function[J]. Intensive Care Med, 2010, 36(3):533-540.
[6]Wang Z, Holthoff JH, Seely KA, et al. Development of oxidative stress in the peritubular capillary microenvironment mediates sepsisinduced renal microcirculatory failure and acute kidney injury[J]. Am J Pathol, 2012, 180:505-516.
[7]Seely KA, Holthoff JH, Burns ST, et al. Hemodynamic changes in the kidney in a pediatric rat model of sepsis-induced acute kidney injury[J]. Am J Physiol Renal Physiol, 2011, 301(1):F209-217.
[8]Bellomo R, Wan L, Langenberg C,et al. Septic acute kidney injury: new concepts[J]. Nephron Exp Nephrol, 2008, 109(4):e95-100.
[9]Bellomo R, Ronco C, Kellum JA, et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group[J]. Crit Care, 2004, 8(4):R204-212.
[10]Peres LA, Wandeur V, Matsuo T. Predictors of acute kidney injury and mortality in an Intensive Care Unit[J]. J Bras Nefrol, 2015, 37(1):38-46.
[11]Kim MH, Koh SO, Kim EJ, et al. Incidence and outcome of contrast-associated acute kidney injury assessed with Risk, Injury, Failure, Loss, and End-stage kidney disease (RIFLE) criteria in critically ill patients of medical and surgical intensive care units: a retrospective study[J]. BMC Anesthesiol, 2015, 15:23.
[12]Santos PR, Monteiro DL. Acute kidney injury in an intensive care unit of a general hospital with emergency room specializing in trauma: an observational prospective study[J]. BMC Nephrol, 2015, 16:30.
[13]Chertow GM, Burdick E, Honour M, et al. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients[J]. J Am Soc Nephrol, 2005, 16(11): 3365-3370.
[14]de Souza SP, Matos RS, Barros LL, et al. Inverse association between serum creatinine and mortality in acute kidney injury[J]. J Bras Nefrol, 2014, 36(4):469-475.
[15]Baeza-Trinidad R, Brea-Hernando A, Morera-Rodriguez S,et al.Creatinine as predictor value of mortality and acute kidney injury in rhabdomyolysis[J]. Intern Med J, 2015, 45(11):1173-1178.
[16]Ricci Z, Cruz DN, Ronco C. Classification and staging of acute kidney injury: beyond the RIFLE and AKIN criteria[J]. Nat Rev Nephrol, 2011, 7(4):201-208.
[17]Mehta RL, Kellum JA, Shah SV,et al.Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care, 2007, 11(2):R31.
[18]Khwaja A. KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120(4):c179-184.
[19]Molitoris BA, Reilly ES. Quantifying glomerular filtration rates in acute kidney injury: a requirement for translational success[J]. Semin Nephrol, 2016, 36(1):31-41.
[20]Siew ED, Matheny ME. Choice of reference serum creatinine in defining acute kidney injury[J]. Nephron, 2015, 131(2):107-112.
[21]Kellum JA, Sileanu FE, Murugan R, et al. Classifying AKI by urine output versus serum creatinine level[J]. J Am Soc Nephrol, 2015, 26(9):2231-2238.
[22]Haase M, Devarajan P, Haase-Fielitz A, et al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies[J]. J Am Coll Cardiol, 2011, 57(17):1752-1761.
[23]Thongprayoon C, Cheungpasitporn W, Akhoundi A, et al. Actual versus ideal body weight for acute kidney injury diagnosis and classification in critically ill patients[J]. BMC Nephrol, 2014, 15:176.
[24]Lin X, Yuan J, Zhao Y, et al. Urine interleukin-18 in prediction of acute kidney injury: a systemic review and meta-analysis[J]. J Nephrol, 2015, 28(1):7-16.
[25]Liangos O, Perianayagam MC, Vaidya VS, et al. Urinary N-acetyl-beta-(D)-glucosaminidase activity and kidney injury molecule-1 level are associated with adverse outcomes in acute renal failure[J]. J Am Soc Nephrol, 2007, 18(3):904-912.
[26]Huen SC, Parikh CR. Molecular phenotyping of clinical AKI with novel urinary biomarkers[J]. Am J Physiol Renal Physiol, 2015, 309(5):F406-413.
[27]Alge JL, Arthur JM. Biomarkers of AKI: a review of mechanistic relevance and potential therapeutic implications[J]. Clin J Am Soc Nephrol, 2015, 10(1):147-155.
[28]Kashani K, Al-Khafaji A, Ardiles T, et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury[J]. Crit Care, 2013, 17(1):R25.
[29]Vijayan A, Faubel S, Askenazi DJ, et al. Clinical Use of the Urine Biomarker [TIMP-2] × [IGFBP7] for Acute Kidney Injury Risk Assessment[J]. Am J Kidney Dis, 2016, 68(1):19-28.